

Getting Started Guide

Pickering Sequence Manager

© Copyright (2021) Pickering Interfaces. All Rights Reserved.

No part of this publication may be reproduced, transmitted, transcribed, translated or stored in any form, or by any means without the written permission of Pickering Interfaces.

Technical details contained within this publication are subject to change without notice.

ISO 9001 Reg No. FM38792

Introduction

The Pickering Sequence Manager software can be found on our downloads page:

http://www.downloads.pickeringtest.info/downloads/

Running the executable will prompt you to accept a license agreement, as well as select a number of installation options.

🔀 Setup - Pickering Sequencer Manager v1.1.2.3 — 🛛	×
pickeringLicense Agreement	
Please read the following License Agreement. You must accept the terms of this agreement before continuing with the installation.	
This agreement is made between Pickering Interfaces Ltd ("Pickering") and you, the person who makes use of Pickering software products ("You"). You must agree all terms in this agreement in order to use Pickering software legally. If you don't agree all terms in the agreement, please don't use Pickering software, and delete all related files from your computer.	
 OWNERSHIP: Pickering software is fully owned by Pickering, this license agreement doesn't change the ownership. 	
2. LICENSE: Pickering grants You the license to use Pickering software, free of	¥
I accept the agreement	
○ I <u>d</u> o not accept the agreement	
http://www.pickeringtest.com <u>N</u> ext > Ca	ancel

Figure 1. License Agreement Window

🛃 Setup - Pickering Sequencer Manager v1.1.2.3		_		×
pickeringSelect Additional Tasks				
Select the additional tasks you would like Setup to perform Sequencer Manager, then click Next.	form while in	nstalling Pic	kering	
File association				
Associate sequencer configuration files (*.psc) wi	th Sequenc	er Manager		
Windows firewall				
Add exception to Windows firewall				
Additional shortcuts:				
✓ Create a <u>d</u> esktop shortcut				
http://www.pickeringtest.com < Bac	k <u>N</u>	ext >	Can	cel

Figure 2. Installation Options

Creating a New Configuration and Adding Modules

A new configuration can be created by selecting "New" under the "Configuration" menu in the top left of the application. From here, modules can be added by selecting the rad "Add Card" icon on the right of the screen. They can also be automatically loaded from a connected LXI chassis with the rad "Import cards from connected device" icon. When a module is added this way the Id, Bus, Device, and Description fields are populated based on the modules discovered.

_	ld:	Bus:	Device:	Description:	
-	CARD1	4	12	41-760-001	
	ld:	Bus:	Device:	Description:	
-	CARD2	4	13	40-297-150	
	ld:	Bus:	Device:	Description:	
	CARD3	4	14	40-586A-001	

Figure 3. Card List

Initialization Options

After cards are defined, initialization options can be configured. Below the Card and Subunit information, a check box for Enable will allow commands to be entered in a text box. These commands will be run when the sequence service is started and before any triggers are applied. These can be useful for ensuring a device state before any new connections are made.

Initialisation [📝 Enable]	
Error DIO:	
•	
Commands	
clear_card CARD1	

Figure 4. Command Text Box For Card Initialization

Defining Triggers

The second tab of the main window lists user-defined inputs and outputs, as well as the properties of the trigger signal. The trigger in and out timing can be specified along with whether to use a hardware trigger, software trigger, or both. If a trigger is defined as an input trigger the In-timer value (in microseconds) is the minimum length of the pulse monitored by the sequencing service to register it as a valid. The value in Out-timer defines the length of the pulse generates by the output triggers. The value can used between 1-255 microseconds and is common to all triggers with the same direction. The node option defines the software process handling the trigger signals when using not using the exclusive hardware mode.

The IO controls can be added using the right of the window. Each of these IO lines can be assigned an identifier and direction. Software IO entries will also have the option to select a Signal while Hardware IO entries will require specifying a hardware pin and whether the trigger should occur on the Falling or Rising Edge.

Cards	& Initialis	sation Digital	nputs & Outputs	5 Triggers & Sequen	ces		
In-time 40	r (us)	Out-timer (us) 60	Mode Exclusive sof	tware mode	▼ Node /dev/piltrig0	•	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ld: TRG			DIO: Dio1 - Pin 2 🔹	Falling edge Rising edge	Signal: User defined signal #1	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ld: ACK			DIO: Dio2 - Pin 3 🔹	Falling edge Rising edge	Signal:	)
8 89	ld: DNF			DIO: Dio3 - Pin 4 🔹	 Falling edge Rising edge 	Signal:	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ld: ERR			DIO: SwError - Pin 14 💌	<ul> <li>Falling edge</li> <li>Rising edge</li> </ul>	Signal: User defined signal #2 🔻	

Figure 5. Inputs & Outputs Window



## **Creating Sequences**

The third tab of the main window is used to define the Sequences associated with each trigger.

Cards &	Initialisation	Digital Inputs & Outputs	s Triggers & Sequence	es				
	Trig1	Operation Mode:	Acknowledge DIO:	Error DIO:	Trigger DIO: TRG •	Done DIO:	Description: 297 test sequence	-
								6



A new trigger can be added using the + "Add Trigger" button to the right of the trigger list. Each trigger will have options for the Operation Mode, Acknowledge DIO, Error DIO, Trigger DIO, Done DIO, and a field for a description. There are several operation modes available:

- Wait Mode: When all sequences are completed the chassis will enter an idle state. No external triggers will affect the chassis until the device receives a Restart or Reload command.
- Loop Mode: When all sequences are completed the chassis will wait for a trigger signal before starting again at the first sequence.
- **Unload Mode:** When all sequences are issued, the current configuration is unloaded. No external triggers will affect the chassis until a Reload command is received which will load the current configuration and listen for a trigger to begin sequencing again at the first sequence.

The Acknowledge DIO, Error DIO, Trigger DIO, and Done DIO entries will each have the option to use one of the Inputs or Outputs defined previously or left blank if that signal is not required.

Once a trigger is defined, sequences can be assigned to it. Select the  $\blacksquare$  "Add sequence" button to create an entry in the sequence list. Each sequence has options to enable Acknowledge signals, closure limit checking, and whether errors are ignored. Additionally, the Order number provided will set the order in which the sequences are run. The "One sequence per trigger" option determines whether the full sequence list of a given trigger is run with a single received trigger signal or each sequence requires its own received trigger to run.

Seque	nces	
🔽 On	e sequence per trigger 🛛 Auto step for goto sequence	
74	Seq1 🗹 Acknowledge 📝 Check closure limit 🔲 Ignore error	Order:
74	Seq2 🗹 Acknowledge 📝 Check closure limit 🔲 Ignore error	Order:
72	Seq3 🗹 Acknowledge 📝 Check closure limit 🔲 Ignore error	Order:





## Adding Commands

The Commands field allows entry of the list of commands to be performed when a given sequence is run. Clicking the show command list window" button will bring up a window of available commands as well as examples of their usage. These commands are also described in this document.

```
Commands

opcrosspoint MatrixCard 1 1 1 1

opcrosspoint MatrixCard 1 2 2 1

opcrosspoint MatrixCard 1 3 4 1

opcrosspoint MatrixCard 1 4 5 1

opcrosspoint MatrixCard 1 1 14 1

opcrosspoint MatrixCard 1 2 15 1

opcrosspoint MatrixCard 1 3 16 1

opcrosspoint MatrixCard 1 4 17 1
```



A red outline will appear around the command list when there is a syntax error:

```
Commands

opcrosspoin MatrixCard 1 1 1 1

opcrosspoint MatrixCard 1 2 2 1

opcrosspoint MatrixCard 1 3 4 1

opcrosspoint MatrixCard 1 4 5 1

opcrosspoint MatrixCard 1 1 14 1

opcrosspoint MatrixCard 1 2 15 1

opcrosspoint MatrixCard 1 3 16 1

opcrosspoint MatrixCard 1 4 17 1
```



#### Connecting to a Chassis

The generated sequences can be run from Sequence Manager after connecting to a compatible LXI chassis. The application can automatically discover networked devices or they can be manually added. Automatic discovery can be initiated using the S "Discover new devices" button after selecting a network adapter from the drop-down menu. A device can be manually added using the Add device to list manually" button.

Discovery	
All Broadcast Interfaces	
Clear device list before search	

Figure 10. LXI Device Discovery Control

Either will populate the device list with the discovered LXI devices, regardless of sequencing compatibility. Non-compatible devices will appear in grey and a description of the highlighted device will appear below. Double-clicking an entry on the list will establish a connection to that device, and a status indicator is provided to show the current connection state.

Status		Device	Serial Number
	60-100-0	001 (Software Simulator)	LS0080027A4DAEA
•	65-200-0	002	L380063
	60-555-0	)27	L380158
	60-590-0	001 (60-901-001)	L380056
	60-590-0	002	L310016
•	60-105-0	001	L380082
Descri	intion	I XI v1 4 Release	
Descri		LXI v1.4 Release 5.2.4-rc4	
Firmw		5.2.4-rc4	
Firmw	are dress	5.2.4-rc4	
Firmw IP Add	are dress	5.2.4-rc4 192.168.2.65	
Firmw IP Ado Mode Name	are dress	5.2.4-rc4 192.168.2.65 60-105-001	

Figure 11. List of Discovered LXI Devices



# Upload, Download, and Running Sequences

The 💭 "Download configuration" and 🚰 "Upload configuration" options become available along the top center of the window once a connection is made to an LXI device. Downloading a configuration will retrieve the configuration currently on the device and load it in the current window, which will overwrite any unsaved data. Uploading a configuration will export the open configuration to the device but does not begin any sequences or enable triggering.

The 🔛 "Start sequence" option will set the device to listen for triggers. Once a trigger is provided the first sequence will be performed, followed by each subsequent sequence operating as defined previously with the "One sequence per trigger" and "Operation mode" options.

While the sequence is running, the 😥 "Stop sequence", 🕨 "Go to sequence", and 🐼 "Restart sequence" options become available and can be used to control the flow of sequences run. Restarting the sequence will place it back in the initial state of waiting for a trigger to begin running from the first sequence.

Software triggers can be sent using the Pilmon tool which is accessed through an SSH interface to the LXI device. The command to send a trigger signal is:

STS SendTriggerSignal <signal(uint)> [<ack signal(uint)>]
Sends a trigger signal (1 or 2) to sequence and wait, 2s timeout,
for ack signal (1 or 2) if specified.

For more information on Pilmon or accessing the device using SSH, refer to our KnowledgeBase articles on these topics:

SSH Control of LXI Devices
Pilmon Command Set



# **Command List**

#### General rules:

- Each command is on its own line
- Anything after "#" is treated as comment
- · Sequence of tabs and spaces is considered as single white space character
- All numbers are decimal unless stated otherwise

#### Types used in sequencing commands:

- **dword** unsigned 32-bit integer (corresponds to uint32_t C-type) It is default type used if not specified, for example: "sub" meaning Sub-Unit number. It is specified in decimal base unless noted otherwise.
- **bool** unsigned 8-bit integer (corresponds to uint8_t C-type). Only two values are allowed:
  - 0 as FALSE
  - 1 as TRUE
- float floating point number (corresponds to float C-type)
- double floating point number (corresponds to double C-type)

**NOTE:** both 'bool' and 'dword' types have naming inherited from Windows™ API types even while Triggers and their ClientBridge library are running on Linux[®].

#### Common labels:

- card string card alias, for example "card1"
- sub dword, decimal subunit number, for example "1"
- row dword, decimal matrix row
- · col dword, decimal matrix column

#### Supported sequencing commands:

- Clearing whole card PIPLX_ClearCard() #clear_card card clear_card card1
- Clearing Sub-Unit of card PIPLX_ClearSub() #clear_sub card sub clear_sub card1 2
- Write array of data to Sub-Unit PIPLX_WriteSub() #write_sub card sub hex_dword1 hex_dword2 write_sub card2 1 0000000 00000000
- Operate a single output channel or bit PIPLX_OpBit() #opbit card sub bit_number action _bool opbit card1 123 1
- Operate a single matrix crosspoint PIPLX_OpCrosspoint() #opcrosspoint card sub row column action_bool opcrosspoint card1 1 1 1 1
- Write to resistors PIPLX_ResSetResistance() #set_res card sub res_value_double|short|open set_rest card3 2 123.34 set_rest card3 2 short set_rest card3 2 open

- Set voltage source PIPLX_VsourceSetVoltage() #vsource_setvoltage card sub voltage_double vsource_setvoltage card1 1.23
- Set attenuation value PIPLX_AttenSetAttenuation() #set_atten card sub atten_float set_atten card1 1.23
- Sets the output voltage of battery simulator (BATT type) sub-units PILPX_BattSetVoltage() #batt_setvoltage card sub voltage_double batt_setvoltage card1 1 1.23
- Sets the output sink current of battery simulator (BATT type) sub-units PIPLX_BattSetCurrent() #batt_setcurrent card sub current_amps_double batt_setcurrent card1 1 0.12
- Sets the output enable pattern of battery simulator (BATT type) sub-units PIPLX_BattSetEnable() #batt_setenable card sub pattern_hex batt_setenable card1 1 1f
- Sets the value of a specific attribute PIPLX_SetAttribute() #set_attribute card sub out_bool attr_code_hex_dword attr_value_hex_dword #ATTR_MODE RESTRICTED set attribute card1 1 1 401 1
- Sets the output voltage of a power supply sub-unit to the specified value PIPLX_PsuSetVoltage() #psu_setvoltage card sub voltage_double psu_setvoltage card1 1 1.23
- Enables or disables a power supply's output PIPLX_PsuEnable() #psu_enable card sub state_bool psu_enable card1 1 1
- Set mode PIPLX_SetMode()
   #set_mode hex_number_of_mode
   set_mode 1 # NO_WAIT
   set_mode 0 # DEFAULT
- Force error simulate LXI error (useful for testing and debugging) #error name can be found as 'enum LXIErrorCodes' in Piplx.h (ClientBridge header) #force_error name_of_lxi_error force_error ER_CARD_DISABLED
- Sleep for specified amount of seconds #sleep seconds #sleep 2

# LXI Chassis Relay Reset Function

#### Overview

Pickering's LXI Chassis Triggered Reset function provides a hardware interface, which upon a logic level change, will interrupt the LXI chassis controller and force the relays inside the chassis to their de-energized state. While this does provide a level of safety in the event of a system fault condition, it does not guarantee that all relays are in their de-energized state in the event that a relay has been welded shut.

The hardware interface is on an AUX port (25-pin Micro D-SUB male connector) located on the chassis controller. The input to the controller which can trigger a Reset event is the SW_RESET (pin 1). A separate output monitor pin, SW_ERROR (pin 14), will change state when a Reset condition has been detected.

Once an error condition has been detected, it will prevent further access to the chassis until the logic state on pin 1 has returned to Inactive.



Figure 12. AUX Port Pinout (25-pin Micro D-SUB male connector)

#### AUX Port Signal Descriptions

Signal	Туре	Output Stage (see images)	Max Sink/ Source Current	Max Voltage	Function
GPIO(0-15)	1/0	Open Drain	Source 600µA (4.7kΩ pull-up), Sink 24mA	5V	General purpose IO for trigger functions.
SW RESET	I	CMOS Input Buffer WIth 10kΩ Pull-down	—	5V	Input signal to command software reset, active high.
SW ERROR	0	Open Drain	Source 600µA (4.7kΩ pull-up), Sink 24mA	5V	SW error output, programmable rising / falling edge. Logic high indicates a reset condition has occurred and chassis is in 'failsafe' mode.
GND	0	—	—	_	System power supply, ground reference.
+5V	0	-	1A (current limited)	-	System power supply, +5V.
INTERLOCK	I	CMOS Input WIth 4.7kΩ Pull-down	_	5V	Interlock for disabling module, active high. Connect to provided +5V pin for correct operation (module enabled).
FP_GND	0	_	_	_	Metalwork reference point, to be used for screen connection of interconnection accessories.





Figure 13. AUX Port Internal Circuitry

#### Applicable Hardware Information:

- 1. The Triggered Reset capability is available on all Pickering LXI chassis with model numbers that end in -002.
- 2. Minimum Firmware required is revision 5.9.1
- 3. 25-position Micro D-SUB connector (ITT Canon MDSM-25SC-Z11-VS1)



Figure 14. 25-pin Micro D-SUB Connector Components

- 4. SW_RESET (Input)
  - a) Rising or falling edge (programmable)
  - b) Minimum pulse width: 100 ms (programmable to 10 s)
  - c) Logic level: TTL (2.4 5V)
- 5. SW_ERROR (Output)

a) Active level: 5V, indicates a reset condition has occurred and chassis is in 'failsafe' mode.



#### **Enabling the Triggered Reset Function**

The Diagnostics page (Figure 15) must be accessed to enable the Triggered Reset function. By default, the function is disabled.

To activate the function

- 1. Select "Enable" from the Feature Control dropdown menu
- 2. Select the desired edge of the input signal on Pin 1 that will cause the Reset function to occur
- 3. The default minimum pulse width required to cause a Reset event is 100 ms. This can be changed to a value up to 10 seconds.
- 4. Select the 'Clear Reset Verification' method to enabled. This will require the SW_RESET line to be inactive before the Reset status can be cleared and communications to the box restored.
- 5. Click on the Submit button to save all changes.

Reset line	e settings:			
Warning: Ch	anging any setti	ngs here will dest	roy all active	e ServerBridge sessions.
Fe	ature control	Enable	~	
	Pulse slope	Falling	~	
Pulse mir	nimum width [ms]	100		
Clear Reset	t Verification	Enabled	~	
	Submit			
Reset/Err	or line statu	S:		
Line	Status			
Reset	Not active			
Error	Not active	2		Clear

Figure 15. LXI Chassis Diagnostics Page

#### Notes:

- 1. The Diagnostics Page displays the current status of the Reset and Error lines.
- 2. The SW_ERROR line is activated only when a Reset condition has occurred.
- 3. Changing settings can only occur when the Reset Flag and SW_ERROR output is inactive and will interrupt communication to all modules. All modules will be reset and relays will change to their de-energized state.



#### Application Example (testing the functionality with 1-step verification)

Detecting a Reset condition on a **Rising** edge (Pin 1), min pulse width is 100 ms.

- 1. From the *Diagnostics* page, view the options for **Triggering Reset/Error**
- 2. Select "Enable", "Rising" edge and, "100" for minimum pulse width.
- 3. Select "Disabled" from the Clear Reset Verification drop-down menu
- 4. Click on "Submit" The box will be interrupted and all relays will return to their de-energized state.
- 5. Ensure in the system log that you see following line: a) <some date/time> (none) daemon.info ServerBridge: Triggering Reset/Error handler started (3013977184). (SW Reset Handler)
- 6. Connect the hardware (+) signal that will be used to drive a Reset event to pin 1 (SW_RESET) and the (-) signal to pin 11 (GND)
- 7. Using application code or Pickering's soft front panel, close relays on the switch modules in the LXI chassis and manually verify that the selected relays have energized
- Drive a rising edge TTL signal on pin 1 (SW_RESET) allowing the signal to remain logic Hi. This will lock the chassis and all pilpxi modules will be reset. Manually confirm that the relays closed in step 7 are now in their de-energized state. Also confirm that SW_ERROR output, pin 14, is Active (logic Hi).
- 9. The following message should be displayed in the message log
  - a) <some date/time> (none) daemon.notice ServerBridge: Trigger type pulse signal change is stable. Reset line activated on rising edge. Reseting all pilpxi based cards.. (SW Reset Handler)
  - b) <some date/time> (none) daemon.info ServerBridge: All pilpxi based cards are protected, only read-only mode allowed. Waiting for clear signal to disable protection.. (SW Reset Handler)
- 10. Confirm that no commands to operate relays can be completed by attempting to energize relays using application code or the Pickering supplied Soft Front Panel
- 11. Return the signal on SW_RESET pin 1 to logic Lo.
- 12. Confirm the SW_ERROR pin 14 has returned to logic Lo.
- 13. Once cleared, the status should be reflected on the web page in the section Reset/Error line status:.
- 14. The following messages should also be displayed in the system log:
  - a) <some date/time> (none) daemon.info ServerBridge: Clear signal received. Disabling protection, releasing all cards.. (SW Reset Handler)
- 15. Confirm that the chassis will accept commands to operate the relays using either application software or the Pickering Soft Front Panel



#### Application Example (testing the functionality with 2-step verification)

Two-step verification may be useful as an extra means of security. In this mode, an additional step is required to return the box to normal operating mode.

Detecting a Reset condition on a **Rising** edge (Pin 1), min pulse width is 100 ms.

- 1. From the Diagnostics page, view the options for Triggering Reset/Error
- 2. Select "Enable", "Rising" edge and, "100" for minimum pulse width.
- 3. Select "Enable" from the Clear Reset Verification drop-down menu
- 4. Click on "Submit" The box will be interrupted and all relays will return to their de-energized state.
- 5. Ensure in the system log that you see following line:
  - a) < some date/time> (none) daemon.info ServerBridge: Triggering Reset/Error handler started (3013977184). (SW Reset Handler)
- 6. Connect the hardware (+) signal that will be used to drive a Reset event to pin 1 (SW_RESET) and the (-) signal to pin 11 (GND)
- 7. Using application code or Pickering's soft front panel, close relays on the switch modules in the LXI chassis and manually verify that the selected relays have energized
- Drive a rising edge TTL signal on pin 1 (SW_RESET) allowing the signal to remain logic Hi. This will lock the chassis and all pilpxi modules will be reset. Manually confirm that the relays closed in step 5 are now in their de-energized state. Also confirm that SW_ERROR output, pin 14, is Active (logic Hi).
- 9. The following message should be displayed in the message log:
  - a) <some date/time> (none) daemon.notice ServerBridge: Trigger type pulse signal change is stable. Reset line activated on rising edge. Reseting all pilpxi based cards.. (SW Reset Handler)
  - b) <some date/time> (none) daemon.info ServerBridge: All pilpxi based cards are protected, only read-only mode allowed. Waiting for clear signal to disable protection.. (SW Reset Handler)
- 10. Confirm that no commands to operate relays can be completed by attempting to energize relays using application code or the Pickering supplied Soft Front Panel
- 11. Return the signal on SW_RESET pin 1 to logic Lo.
- 12. Confirm the SW_ERROR pin 14 has not changed and remains latched at logic Hi.
- 13. Confirm that no commands to operate relays can be completed and a system error is returned when attempting to energize relays using application code or the Pickering supplied Soft Front Panel
- 14. To clear the lock/reset state, perform one of the following steps. But first, ensure that the input to SW_RESET on pin 1 is still inactive.

i) Manually:

From the Diagnostics Triggering Reset/Error menu, click on the Clear button

- ii) Programmatically: Invoke the function call from the Pickering ClientBridge API. (in case of C++ ClientBridge: PICMLX_ClearSWReset(SESSION SID);
- 15. Once cleared, the status should be reflected on the web page in the section Reset/Error line status:.
- 16. The following messages should also be displayed in the system log:
  - a) <some date/time> (none) daemon.info ServerBridge: Clear signal received. Disabling protection, releasing all cards.. (SW Reset Handler)
- 17. Confirm that SW_ERROR pin 14 has been driven Lo and the chassis will accept commands to operate the relays using either application software or the Pickering Soft Front Panel.



The oscilloscope screen shot in figure 16 displays the moment in time where a Reset condition is activated on a falling edge (100ms). The yellow trace represents the SW_RESET (pin 1) and the green trace represents SW_ERROR (pin 14). All relays are de-energized when the SW_ERROR (Green trace) changes to the active Hi state which is after the minimum pulse width has been satisfied.



Figure 16. SW_ERROR and SW_RESET State Change Waveforms

#### Power Cycling

If the unit has experienced a failsafe condition, and power is cycled to the unit, as long as the input to SW_RESET returns to inactive before power is applied, the failsafe condition will clear and communication will be restored to the box. This is true regardless of the verification method. If SW_RESET remains active through the power cycle event, the failsafe condition will persist, SW_ERROR will remain active and the box will block commands to energize the relays.



# **Technical Support**

# **Technical Support**

For Technical Support please contact Pickering Interfaces either by phone, the website or via e-mail.

# Worldwide Technical Support and Product Information:

pickeringtest.com

# **Pickering Interfaces Headquarters**

Stephenson Road, Clacton-on-Sea, CO15 4NL United Kingdom Tel: +44 (0)1255-687900 E-Mail: sales@pickeringtest.com

#### USA

Tel: (West) +1 541 471 0700 Tel: (East) +1 781 897 1710 E-mail: ussales@pickeringtest.com

France

Tel +33 9 72 58 77 00 E-mail: frsales@pickeringtest.com

#### Germany

Tel: +49 89 125 953 160 E-mail: desales@pickeringtest.com

#### Sweden

Tel: +46 340-69 06 69 E-mail: ndsales@pickeringtest.com

Czech Republic

Tel: +420 558 987 613 E-mail: desales@pickeringtest.com

China

Tel: +86 4008 799 765

E-mail: chinasales@pickeringtest.com

