

SOFTWARE MANUAL Page 1

pickering

PICKERING INTERFACES

Programming Manual

SYSTEM 40 and 45 PXI SWITCHING MODULES,
SYSTEM 50 PCI SWITCHING MODULES &

SYSTEM 41 PXI INSTRUMENTS (SELECTED MODELS)

www.pickeringtest.com
pickering

ISO 9002
Reg No. FM38792

PCI

Pickering Interfaces PXI
Programming Manual

for Switching Cards:
System 40, System 45 and System 50

and Instrument Cards:
System 41 (selected models)

Version Date: 27 Feb 2025

Copyright © Pickering Interfaces Ltd. 2025

Programming options for Pickering Interfaces PXI Cards

Software drivers are supplied for Microsoft Windows 7/8/10/11 operating systems, with
specific support for the following development environments:

• Microsoft Visual Basic
• Microsoft Visual C++
• Borland C++
• National Instruments LabWindows/CVI
• National Instruments LabVIEW and LabVIEW RT

Windows drivers are supplied in the form of Dynamic Link Libraries, which should also be
usable in any other development environment that supports them.

Three different Windows drivers are available to meet particular system requirements, and
should none of these be suitable there is also the option of register-level programming. Drivers
are generally 'universal', handling all models in the System 40, 45 and 50 ranges; however
some models that are not compliant with the the Iviswtch class cannot be used with the pi40iv
IVI driver. The pipx40 and Pilpxi drivers are also applicable to certain models in the System 41
(PXI Instruments) range - see these drivers' System 41 support lists.

Please note that this documentation is available in its most up-to-date form as HTML help files,
fully hyperlinked for easy access - both pipx40 and Pilpxi documents are included in the
Pipx40vpp software installation.

IVI Driver for Windows - pi40iv
The pi40iv IVI (Interchangeable Virtual Instrument) driver supports all Pickering Interfaces PXI
switch cards that are consistent with the Iviswtch class model - as are the great majority of
cards in the System 40/45/50 ranges. Based on VISA (Virtual Instrument Software
Architecture) it integrates well with LabWindows/CVI and LabVIEW, and is fully compatible
with Switch Executive. Provided VISA is available, it is also usable in general-purpose
programming environments such as Visual C++ and Visual Basic. Programming information for
this driver is not currently included in this manual - please consult separate documentation.

VISA Driver for Windows - pipx40
The pipx40 driver conforms to the VISA (Virtual Instrument Software Architecture) standard
for programmable instrumentation. Instrument control environments such as LabVIEW and
LabWindows/CVI are based on VISA, and pipx40 support libraries are provided for them.
Where VISA is available, pipx40 can also be used in general-purpose programming
environments such as Visual C++ and Visual Basic. When IVI is not a system requirement this
driver will often yield faster operation than the pi40iv driver.

Direct I/O Driver for Windows - Pilpxi
The Pilpxi driver accesses cards directly, without using the VISA software layer, while offering
similar overall functionality to pipx40. It is most commonly used in general-purpose
programming environments such as Visual C++ and Visual Basic. Operating speed of the VISA
and Direct I/O drivers is generally comparable.

Register-level Programming
Where the supplied drivers are not suitable, register-level programming can be employed - for
example:

• if the functionality of the supplied drivers does not meet the application requirements
• if security considerations demand full source-code for the application
• in development environments that have alternate mechanisms for accessing PCIbus
• for operating systems other than Windows

LabVIEW, LabWindows/CVI and Switch Executive are trademarks of National Instruments
Corporation.

Section 1: PXI VISA Driver - pipx40

Section 2: PXI Direct I/O Driver - Pilpxi

Section 3: Register-level Programming

Pickering Interfaces PXI VISA
Driver - pipx40

i

Table Of Contents
Pickering Interfaces PXI VISA Driver - pipx40...1

Cards with Special Features .. 18

VISA Standard Functions.. 54

Initialise.. 55

Utility ... 57

Close .. 63

Card Specific Functions .. 64

Information and Status ... 65

Switching and General Purpose Output .. 84

Specialised Switching .. 94

Switch Masking .. 106

Input .. 119

Calibration... 123

Programmable Resistor ... 138

Programmable Potentiometer ... 147

Programmable RF Attenuator ... 148

Power Supplies... 156

Battery Simulator ... 164

Thermocouple Simulator.. 175

Mode Control ... 184

Utility Programs .. 187

Application Notes .. 193

Segmented Matrix .. 207

Secure Functions... 220

Secure versions of VISA standard functions .. 221

Secure versions of card specific functions... 226

Table Of Contents

ii

Index ... 247

1

Pickering Interfaces PXI VISA Driver - pipx40

Pickering Interfaces PXI VISA Driver - pipx40

This document describes programming support for Pickering Interfaces PXI cards
using the pipx40 VISA (Virtual Instrument Software Architecture) software driver
which is applicable to the following families of switching cards:

• System 40 (3U PXI)
• System 45 (6U PXI)
• System 50 (PCI)

Certain System 41 (PXI Instrument) cards are also supported - for models see
the System 41 Support List.

Formerly maintained by the VXIplug&play Systems Alliance, information on VISA
and its specifications is now obtainable through the IVI Foundation
http://ivifoundation.org.

The target framework for this driver is WIN32, providing 32 bit application
support for Microsoft Windows® versions 7/8/10/11.

The driver requires NI-VISA version 4.1 or greater to be installed on the host
system for its operation (VISA version 4.0.0, implementation 4.1.0). The pipx40
driver installation contains the core driver DLLs, support files, help files, sample
programs and the Test Panel software.

System 40/45/50 cards offer a wide range of Relay Switching, Digital Input-
Output and other specialised functions in PXI, CompactPCI and PCI formats.

Version date: 27 Feb 2025

Pickering Interfaces PXI VISA Driver - pipx40

2

Copyright © Pickering Interfaces Ltd. 2025

Pickering Interfaces PXI VISA Driver - pipx40

3

pipx40 VISA Driver Basics

The pipx40 driver requires the VISA (Virtual Instrument Software Architecture)
software layer to have been installed, of a version that supports PXI bus
operation. The pipx40 driver is implemented in Dynamic Link Library
pipx40_32.dll, together with library/header files for each supported programming
environment.

pipx40 install location

The install location for pipx40 driver files should default to the appropriate VISA
folder, using information obtained from the Windows registry. For legacy
VXIplug&play installations it is likely to be "C:\VXIPNP\WinNT", while more recent
IVI foundation installations will usually be in "C:\Program Files\IVI
Foundation\VISA\WinNT".

Alternative drivers

The Pilpxi Direct I/O (kernel) driver is also available, giving broadly similar
functionality to pipx40 while being independent of the VISA software layer.

A driver compliant with the IVI (Interchangeable Virtual Instruments) standard,
pi40iv, is also available.

Pickering Interfaces PXI VISA Driver - pipx40

4

Accessing Cards

Resource names

The VISA resource name supplied to pipx40_init specifies the Pickering card to be
opened. A typical example might be "PXI0::15::INSTR", which targets the card at
the logical location PXI bus = 0, slot = 15. The VISA environment commonly
allows the setting up of aliases, so that for example the name "SWITCH_CARD"
can be assigned to represent "PXI0::15::INSTR". A program can then open the
card using the resource name "SWITCH_CARD" and if the card's location is
changed subsequently it is only necessary to alter the alias, instead of editing the
program.

Instrument handles

When a card is successfully opened by pipx40_init, VISA returns an Instrument
handle associated with the card. This handle is then used as necessary to specify
the card in other function calls.

Sub-units

Pickering PXI cards contain one or more independently addressable functional
blocks, or sub-units. Sub-unit numbers begin at 1, and separate sequences are
used for input and output functions. This number is used in function calls to
access the appropriate block. Generally, sub-unit numbers correspond directly to
the bank numbers specified in hardware documentation.

Sub-unit examples:

Model Configuration INPUT
sub-unit
#1

OUTPUT
sub-unit
#1

OUTPUT
sub-unit
#2

OUTPUT
sub-unit
#3

40-110-
021

16 SPDT
switches

None 16 SPDT
switches

None None

40-290-
121

Dual
Programmable
resistors + 16
SPDT switches

None Resistor
#1

Resistor
#2

16 SPDT
switches

40-490-
001

Digital I/O 16-
channel
inputs

32-
channel
outputs

None None

40-511-
021

Dual 12 x 4
matrix

None 12 x 4
matrix #1

12 x 4
matrix #2

None

Sub-unit characteristics

The numbers of input and output sub-units in a card can be obtained using
function pipx40_getSubCounts.

Pickering Interfaces PXI VISA Driver - pipx40

5

Sub-unit type and dimensions can be obtained using functions:

pipx40_getSubType - as a text string

pipx40_getSubInfo - in numerical format

pipx40_getSubType
type desc.

pipx40_getSubInfo
type value

Characteristics

INPUT 1 Digital inputs.

SWITCH 1 - pipx40_TYPE_SW Uncommitted switches.
Switches can be
selected in any arbitrary
pattern.

MUX 2 - pipx40_TYPE_MUX Multiplexer, single
channel. Only one
channel can be selected at
any time.

MUXM 3 - pipx40_TYPE_MUXM Multiplexer, multi channel.
Any number of
channels can be selected
simultaneously.

MATRIX 4 - pipx40_TYPE_MAT Matrix, LF. Multiple
crosspoints may be
closed on any row or
column, though there
may be a limit on the total
number that
can be closed
simultaneously.
Some matrices intended for
RF use are also
characterised as this type,
though closure
of multiple crosspoints on
a row or column
will inevitably compromise
RF performance.

MATRIXR 5 - pipx40_TYPE_MATR Matrix, RF. A matrix
intended for RF use,
generally permitting the
closure of only
one crosspoint on each row
and column.

DIGITAL 6 - pipx40_TYPE_DIG Digital outputs. Outputs
can usually be
energised in any arbitrary
pattern; however
in some cases operations
may be restricted,
particularly in DIGITAL
sub-units of cards
described under
Cards with Special
Features.

RES 7 - pipx40_TYPE_RES Programmable resistor.

Pickering Interfaces PXI VISA Driver - pipx40

6

ATTEN 8 -
pipx40_TYPE_ATTEN

Programmable RF attenuator.

PSUDC 9 -
pipx40_TYPE_PSUDC

DC power supply.

BATT 10 -
pipx40_TYPE_BATT

Battery Simulator.

VSOURCE 11 -
pipx40_TYPE_VSOURCE

Programmable voltage
source.

MATRIXP 12 -
pipx40_TYPE_MATP

Matrix with restricted
modes of operation,
for example allowing the
connection of only
one row (Y) crosspoint on
any column (X).
Information on its specific
characteristics
can be obtained using
function
pipx40_getSubAttribute.

Pickering Interfaces PXI VISA Driver - pipx40

7

Data Formats

Two basic data formats are used by the driver.

Channel Number

The individual output to be affected by functions such as pipx40_setChannelState
is specified by a channel number.

For any sub-unit type other than a matrix, this unity-based number directly
specifies the affected output channel.

For a matrix sub-unit, the channel number of a crosspoint is determined by
folding on the row-axis. For example in a MATRIX(12X8), having 12 columns and
8 rows, channel number 13 represents the crosspoint (row 2, column 1):

Note: matrix operation

More straightforward matrix operation using row/column co-ordinates is provided
by functions:

pipx40_setCrosspointState

pipx40_getCrosspointState

Pickering Interfaces PXI VISA Driver - pipx40

8

pipx40_setCrosspointMask

pipx40_getCrosspointMask

Pattern Array

Functions affecting all of a sub-unit's channels utilise a one-dimensional data
array (or vector) of 32-bit (unsigned) longwords. In the array, each bit represents
the state of one output channel: '0' for OFF, '1' for ON. The least significant bit in
the base element of the array corresponds to channel 1, with more significant bits
corresponding to higher-numbered channels.

The minimum number of longwords needed to represent a sub-unit is the integer
part of:

((rows * columns) + 31) / 32

For a matrix sub-unit, bit assignments follow the same method as that used to
determine channel numbers. Hence for the matrix example above:

Element 0 bit 0 = row 1 column 1

Element 0 bit 11 = row 1 column 12

Element 0 bit 12 = row 2 column 1

Element 2 bit 31 = row 8 column 12

This format is employed by functions:

pipx40_setChannelPattern

pipx40_getChannelPattern

pipx40_setMaskPattern

pipx40_getMaskPattern

pipx40_readInputPattern

Pickering Interfaces PXI VISA Driver - pipx40

9

Timing Issues

Default mode

In the default mode of operation, driver functions incorporate appropriate delay
periods to guarantee safe sequencing of internal events and that switch states
will have stabilised prior to returning (fully debounced operation).

Break-before-make action is enforced for all operations, including pattern based
functions such as pipx40_setChannelPattern.

No-wait mode

If the option pipx40_MODE_NO_WAIT is invoked using pipx40_setDriverMode all
sequencing and settling delays are disabled. This allows other operations to
proceed while switches are transitioning - the debounce period for a microwave or
high power switch may be 15 milliseconds or more. A sub-unit's debounce period
can be discovered using pipx40_getSettlingTime.

It should be borne in mind that for some models the elimination of internal
sequencing delays could result in transient illicit states.

When pipx40_MODE_NO_WAIT is set stabilisation of a sub-unit's switches can be
determined by polling the result of pipx40_getSubStatus; or stabilisation of all
switches on a card by polling with pipx40_getCardStatus. In either case
stabilisation is indicated by the pipx40_STAT_BUSY bit being clear.

Pickering Interfaces PXI VISA Driver - pipx40

10

Function Tree Layout

--VISA Standard Functions--

Initialise

Initialise a Pickering card pipx40_init

Utility

Convert a numeric error code to a
message

pipx40_error_message

Error Query pipx40_error_query

Reset a card pipx40_reset

Card driver/firmware revision query pipx40_revision_query

Self-test a card pipx40_self_test

Close

Close a Pickering card pipx40_close

--Card Specific Functions--

Secure versions of VISA utility functions

Convert a numeric error code to a
message

pipx40_errorMessage_s

Error Query pipx40_errorQuery_s

Card driver/firmware revision query pipx40_revisionQuery_s

Self-test a card pipx40_selfTest_s

Information and Status

pipx40_getCardId Get card ID

pipx40_getCardId_s

Get card status pipx40_getCardStatus

Get closure limit pipx40_getClosureLimit

pipx40_getDiagnostic Get diagnostic information

pipx40_getDiagnostic_s

Get settling time pipx40_getSettlingTime

Get card sub-unit counts pipx40_getSubCounts

Get sub-unit description (numeric
format)

pipx40_getSubInfo

Get sub-unit status pipx40_getSubStatus

pipx40_getSubType Get sub-unit description (string
format)

pipx40_getSubType_s

Switching and General Purpose Output

Clear all channels of a card pipx40_clearCard

Clear all channels of a sub-unit pipx40_clearSub

Pickering Interfaces PXI VISA Driver - pipx40

11

pipx40_getChannelPattern Get a sub-unit's channel pattern

pipx40_getChannelPattern_s

Get the state of a single channel pipx40_getChannelState

pipx40_setChannelPattern Set a sub-unit's channel pattern

pipx40_setChannlePattern_s

Turn on/off a single channel pipx40_setChannelState

Specialised Switching

Get the state of a matrix crosspoint pipx40_getCrosspointState

Get sub-unit attribute value pipx40_getSubAttribute

Operate a switch - specialised pipx40_operateSwitch

Turn on/off of a matrix crosspoint pipx40_setCrosspointState

Switch Masking

Clear a sub-unit's mask pipx40_clearMask

Get the mask state of a matrix
crosspoint

pipx40_getCrosspointMask

pipx40_getMaskPattern Get a sub-unit's mask pattern

pipx40_getMaskPattern_s

Get the mask state of a single channel pipx40_getMaskState

Mask/unmask a matrix crosspoint pipx40_setCrosspointMask

pipx40_setMaskPattern Set a sub-unit's mask pattern

pipx40_setMaskPattern_s

Mask/unmask a single channel pipx40_setMaskState

Input

pipx40_readInputPattern Read a sub-unit's input pattern

pipx40_readInputPattern_s

Read the state of a single input pipx40_readInputState

Calibration

Read an integer calibration value pipx40_readCalibration

Read a sub-unit's calibration date pipx40_readCalibrationDate

Read floating-point calibration
value(s)

pipx40_readCalibrationFP

Set calibration point pipx40_setCalibrationPoint

Write an integer calibration value pipx40_writeCalibration

Write a sub-unit's calibration date pipx40_writeCalibrationDate

Write floating-point calibration
value(s)

pipx40_writeCalibrationFP

Programmable Resistor

Get resistor information pipx40_resGetInfo

Get the current resistance setting pipx40_resGetResistance

Pickering Interfaces PXI VISA Driver - pipx40

12

Set the resistance value pipx40_resSetResistance

Programmable RF Attenuator

Get the current attenuation setting pipx40_attenGetAttenuation

Get attenuator information (numeric
format)

pipx40_attenGetInfo

Get an individual pad's attenuation
value

pipx40_attenGetPadValue

pipx40_attenGetType Get attenuator description (string
format)

pipx40_attenGetType_s

Set the attenuation value pipx40_attenSetAttenuation

Power Supplies

Enable or disable a power supply's
output

pipx40_psuEnable

Get power supply information (numeric
format)

pipx40_psuGetInfo

pipx40_psuGetType Get power supply description (string
format)

pipx40_psuGetType_s

Get power supply output voltage setting pipx40_psuGetVoltage

Set power supply output voltage pipx40_psuSetVoltage

Battery Simulator

Set voltage pipx40_battSetVoltage

Get voltage pipx40_battGetVoltage

Set current pipx40_battSetCurrent

Get current pipx40_battGetCurrent

Set enable pipx40_battSetEnable

Get enable pipx40_battGetEnable

Read interlock state pipx40_battReadInterlockState

Thermocouple Simulator

Set range pipx40_vsourceSetRange

Get Range pipx40_vsourceGetRange

Set Voltage pipx40_vsourceSetVoltage

Get Voltage pipx40_vsourceGetVoltage

Set Enable pipx40_vsourceSetEnable

Get Enable pipx40_vsourceGetEnable

Mode control

Set driver operating mode pipx40_setDriverMode

Pickering Interfaces PXI VISA Driver - pipx40

13

Error Codes

Driver functions return a status code that indicates success or failure of the
function call. A status code of zero (VI_SUCCESS) indicates success.

Driver-specific error codes are as follows:

Driver constant Hexadecimal
value

Description

pipx40_ERROR_BAD_SESSION BFFC0800 No Pickering card is open
on the session specified

pipx40_ERROR_NO_INFO BFFC0801 Cannot obtain information
for specified card

pipx40_ERROR_CARD_DISABLED BFFC0802 Specified card is disabled

pipx40_ERROR_BAD_SUB BFFC0803 Sub-unit value out-of-
range for target card

pipx40_ERROR_BAD_CHANNEL BFFC0804 Channel number out-of-
range for target sub-unit

pipx40_ERROR_NO_CAL_DATA BFFC0805 Target sub-unit has no
calibration data to
read/write

pipx40_ERROR_BAD_ARRAY BFFC0806 SafeArray type, shape or
size is incorrect

pipx40_ERROR_MUX_ILLEGAL BFFC0807 Non-zero write data value
is illegal for MUX sub-
unit

pipx40_ERROR_EXCESS_CLOSURE BFFC0808 Execution would cause
closure limit to be
exceeded

pipx40_ERROR_ILLEGAL_MASK BFFC0809 One or more of the
specified channels cannot
be masked

pipx40_ERROR_OUTPUT_MASKED BFFC080A Cannot activate an output
that is masked

pipx40_ERROR_FAILED_INIT BFFC080B Cannot open a Pickering
card at the specified
location

pipx40_ERROR_READ_FAIL BFFC080C Failed read from hardware

pipx40_ERROR_WRITE_FAIL BFFC080D Failed write to hardware

pipx40_ERROR_VISA_OP BFFC080E VISA operation failure

pipx40_ERROR_VISA_VERSION BFFC080F Incompatible VISA version

pipx40_ERROR_SUB_TYPE BFFC0810 Incompatible with sub-unit
type

pipx40_ERROR_BAD_ROW BFFC0811 Matrix row value out-of-

Pickering Interfaces PXI VISA Driver - pipx40

14

range

pipx40_ERROR_BAD_COLUMN BFFC0812 Matrix column value out-
of-range

pipx40_ERROR_BAD_ATTEN BFFC0813 Attenuation value out-of-
range

pipx40_ERROR_BAD_VOLTAGE BFFC0814 Voltage value out-of-range

pipx40_ERROR_BAD_CAL_INDEX BFFC0815 Calibration index value
out-of-range

pipx40_ERROR_BAD_SEGMENT BFFC0816 Segment number out of
range

pipx40_ERROR_BAD_FUNC_CODE BFFC0817 Function code value out of
range

pipx40_ERROR_BAD_SUBSWITCH BFFC0818 Subswitch value out of
range

pipx40_ERROR_BAD_ACTION BFFC0819 Action code out of range

pipx40_ERROR_STATE_CORRUPT BFFC081A Cannot execute due to
corrupt sub-unit state

pipx40_ERROR_BAD_ATTR_CODE BFFC081B Unrecognised attribute
code

pipx40_ERROR_EEPROM_WRITE_TMO BFFC081C Timeout writing to EEPROM

pipx40_ERROR_ILLEGAL_OP BFFC081D Operation is illegal in
the sub-unit's current
state

pipx40_ERROR_BAD_POT BFFC081E Unrecognised pot number
requested

pipx40_ERROR_MATRIXR_ILLEGAL BFFC081F Invalid write pattern for
MATRIXR sub-unit

pipx40_ERROR_MISSING_CHANNEL BFFC0820 Attempted operation on
non-existent channel

pipx40_ERROR_CARD_INACCESSIBLE BFFC0821 Card cannot be accessed
(failed/removed/unpowered)

pipx40_ERROR_BAD_FP_FORMAT BFFC0822 Unsupported internal
floating-point format
(internal error)

pipx40_ERROR_UNCALIBRATED BFFC0823 Sub-unit is not calibrated

pipx40_ERROR_BAD_RESISTANCE BFFC0824 Unobtainable resistance
value

pipx40_ERROR_BAD_STORE BFFC0825 Invalid calibration store
number

pipx40_ERROR_BAD_MODE BFFC0826 Invalid mode value

pipx40_ERROR_SETTINGS_CONFLICT BFFC0827 Conflicting device
settings

pipx40_ERROR_CARD_TYPE BFFC0828 Function call incompatible
with card type or
capabilities

pipx40_ERROR_BAD_POLE BFFC0829 Switch pole value out of

Pickering Interfaces PXI VISA Driver - pipx40

15

range

pipx40_ERROR_MISSING_CAPABILITY BFFC082A Attempted to activate a
non-existent capability

pipx40_ERROR_MISSING_HARDWARE BFFC082B Action requires hardware
that is not present

pipx40_ERROR_HARDWARE_FAULT BFFC082C Faulty hardware

pipx40_ERROR_EXECUTION_FAIL BFFC082D Failed to execute (e.g.
blocked by a hardware
condition)

pipx40_ERROR_BAD_CURRENT BFFC082E Current value out of range

pipx40_ERROR_BAD_RANGE BFFC082F Illegal range value

pipx40_ERROR_ATTR_UNSUPPORTED BFFC0830 Attribute not supported

pipx40_ERROR_BAD_REGISTER BFFC0831 Register number out of
range

pipx40_ERROR_MATRIXP_ILLEGAL BFFC0832 Invalid channel closure or
write pattern for MATRIXP
sub-unit

pipx40_ERROR_BUFFER_UNDERSIZE BFFC0833 Data buffer too small

pipx40_ERROR_UNKNOWN BFFC0FFF Unspecified error

Pickering Interfaces PXI VISA Driver - pipx40

16

Contact Pickering

For further assistance, please contact:

Pickering Interfaces Ltd.

Stephenson Road

Clacton-on-Sea

Essex CO15 4NL

UK

Telephone: 44 (0)1255 687900

Fax: 44 (0)1255 425349

Regional contact details are available from our website:
http://www.pickeringtest.com

Email (sales): sales@pickeringtest.com

Email (technical support): support@pickeringtest.com

Other useful links

PXI Systems Alliance (PXISA): http://www.pxisa.org

PCI Industrial Computer Manufacturers Group (PICMG): http://www.picmg.com

PCI Special Interest Group (PCI-SIG): http://www.pcisig.com

IVI Foundation (maintainer of the VISA standard): http://ivifoundation.org

Pickering Interfaces PXI VISA Driver - pipx40

17

System 41 Support List

The following System 41 models are supported by pipx40 driver:

• 41-180-021
• 41-180-022
• 41-181-021
• 41-181-022
• 41-182-003
• 41-660-001
• 41-661-001
• 41-720
• 41-735-001
• 41-750-001
• 41-751-001
• 41-752-001
• 41-752-901
• 41-753-001

If your System 41 card does not appear in this list support for it may have been
added subsequent to the above release; or it may be supported instead by its
own card-specific driver. In either case the appropriate driver version can be
downloaded from our website http://www.pickeringtest.com.

Pickering Interfaces PXI VISA Driver - pipx40

18

Cards with Special Features

Cards with Special Features

Certain cards support special features that are accessed using Input, General
Purpose Output or other specific functions. The nature of these features and their
methods of operation by the software driver are model-specific:

• 40-170-101, 40-170-102 Current Sensing Switch Cards
• 40-260-001 Precision Resistor
• 40-261 Precision Resistor
• 40-262 RTD Simulator
• 40-265 Strain Gauge Simulator
• 40-297 Precision Resistor
• 40-412-001 Digital Input-Output
• 40-412-101 Digital Input-Output
• 40-413-001 Digital Input-Output
• 40-413-002 Digital Input-Output
• 40-413-003 Digital Input-Output
• 41-750-001 Battery Simulator
• 41-751-001 Battery Simulator
• 41-752-001 and 41-752-901 Battery Simulator
• 41-753-001 Battery Simulator
• 50-297 Precision Resistor

Pickering Interfaces PXI VISA Driver - pipx40

19

40-170-101/102 Current Sensing Switch Card

The 40-170-101 and 40-170-102 cards contain current sensing circuitry to
monitor the current flowing through the main relay contacts. A voltage
proportional to the current flowing through the contacts is delivered to the
monitor output on the card.

The card contains the following sub-units:

Output Sub-
Units

Function

1 2 bit switch, 1 for each relay
2 2-way MUX, controls monitor of relay 1 or relay 2 or

cascade if neither relay is selected
3 * 16-bit digital output, used to control current

monitor circuit 1
4 * 16-bit digital output, used to control current

monitor circuit 2

Input Sub-
Units

Function

1 * 8-bit port to read result of control commands on
circuit 1

2 * 8-bit port to read result of control commands on
circuit 2

3 * 8-bit port to read RDAC(0) on circuit 1
4 * 8-bit port to read RDAC(1) on circuit 1
5 * 8-bit port to read RDAC(0) on circuit 2
6 * 8-bit port to read RDAC(1) on circuit 2

The sub-units marked with an asterisk (*) are used for calibration of the current
monitoring circuits and are not required for normal operation, refer to the 40-
170-101 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

20

40-260-001 Precision Resistor

The 40-260-001 Precision Resistor card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Units

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(28) Precision resistor 1
2: RES(28) Precision resistor 2
3: RES(28) Precision resistor 3

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_clearSub
pipx40_getChannelPattern

4: MUX(4) Common reference multiplexer

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-
Units

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

1:
RES(28)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(28)

Precision resistor 2 PR2 switched resistance
elements

3:
RES(28)

Precision resistor 3 PR3 switched resistance
elements

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_clearSub
pipx40_getChannelPattern

5: MUX(9) DMM multiplexer

Pickering Interfaces PXI VISA Driver - pipx40

21

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

6: DIGITAL(32) PR1 digital pot element
7: DIGITAL(32) PR2 digital pot element
8: DIGITAL(32) PR3 digital pot element

Refer to the 40-260-001 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

22

40-261 Precision Resistor

The 40-261-001 and 40-261-002 Precision Resistor cards contain an array of sub-
units for control and calibration.

Functions for normal operation

Output Sub-
Units

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(38) Precision resistor 1
2: RES(38) Precision resistor 2

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-
Units

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

1:
RES(38)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(38)

Precision resistor 2 PR2 switched resistance
elements

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_clearSub

3: MUX(6) DMM multiplexer

Refer to the 40-261 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

23

40-262 RTD Simulator

Model 40-262 RTD Simulator cards contain an array of sub-units for control and
calibration.

Models 40-262-001, 40-262-002 (18 channels): functions for normal
operation

Output Sub-
Units

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(13) Simulator channel 1
2: RES(13) Simulator channel 2
3: RES(13) Simulator channel 3
4: RES(13) Simulator channel 4
5: RES(13) Simulator channel 5
6: RES(13) Simulator channel 6
7: RES(13) Simulator channel 7
8: RES(13) Simulator channel 8
9: RES(13) Simulator channel 9
10: RES(13) Simulator channel 10
11: RES(13) Simulator channel 11
12: RES(13) Simulator channel 12
13: RES(13) Simulator channel 13
14: RES(13) Simulator channel 14
15: RES(13) Simulator channel 15
16: RES(13) Simulator channel 16
17: RES(13) Simulator channel 17
18: RES(13) Simulator channel 18

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_clearSub
pipx40_getChannelPattern

19: MUX(4) Common reference multiplexer

Models 40-262-001, 40-262-002 (18 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output Applicable functions Applicable functions

Pickering Interfaces PXI VISA Driver - pipx40

24

Sub-Units pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

pipx40_setChannelPattern
pipx40_getChannelPattern

1: RES(13) Simulator channel 1 Sim chan 1 switched
resistance elements

2: RES(13) Simulator channel 2 Sim chan 2 switched
resistance elements

3: RES(13) Simulator channel 3 Sim chan 3 switched
resistance elements

4: RES(13) Simulator channel 4 Sim chan 4 switched
resistance elements

5: RES(13) Simulator channel 5 Sim chan 5 switched
resistance elements

6: RES(13) Simulator channel 6 Sim chan 6 switched
resistance elements

7: RES(13) Simulator channel 7 Sim chan 7 switched
resistance elements

8: RES(13) Simulator channel 8 Sim chan 8 switched
resistance elements

9: RES(13) Simulator channel 9 Sim chan 9 switched
resistance elements

10:
RES(13)

Simulator channel 10 Sim chan 10 switched
resistance elements

11:
RES(13)

Simulator channel 11 Sim chan 11 switched
resistance elements

12:
RES(13)

Simulator channel 12 Sim chan 12 switched
resistance elements

13:
RES(13)

Simulator channel 13 Sim chan 13 switched
resistance elements

14:
RES(13)

Simulator channel 14 Sim chan 14 switched
resistance elements

15:
RES(13)

Simulator channel 15 Sim chan 15 switched
resistance elements

16:
RES(13)

Simulator channel 16 Sim chan 16 switched
resistance elements

17:
RES(13)

Simulator channel 17 Sim chan 17 switched
resistance elements

18:
RES(13)

Simulator channel 18 Sim chan 18 switched
resistance elements

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_clearSub
pipx40_getChannelPattern

20: MUX(54) DMM multiplexer

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

21: DIGITAL(32) Sim chan 1 digital pot element
22: DIGITAL(32) Sim chan 2 digital pot element

Pickering Interfaces PXI VISA Driver - pipx40

25

23: DIGITAL(32) Sim chan 3 digital pot element
24: DIGITAL(32) Sim chan 4 digital pot element
25: DIGITAL(32) Sim chan 5 digital pot element
26: DIGITAL(32) Sim chan 6 digital pot element
27: DIGITAL(32) Sim chan 7 digital pot element
28: DIGITAL(32) Sim chan 8 digital pot element
29: DIGITAL(32) Sim chan 9 digital pot element
30: DIGITAL(32) Sim chan 10 digital pot element
31: DIGITAL(32) Sim chan 11 digital pot element
33: DIGITAL(32) Sim chan 12 digital pot element
33: DIGITAL(32) Sim chan 13 digital pot element
34: DIGITAL(32) Sim chan 14 digital pot element
35: DIGITAL(32) Sim chan 15 digital pot element
36: DIGITAL(32) Sim chan 16 digital pot element
37: DIGITAL(32) Sim chan 17 digital pot element
38: DIGITAL(32) Sim chan 18 digital pot element

Models 40-262-101, 40-262-102 (6 channels): functions for normal
operation

Output Sub-
Units

Applicable functions
pipx40_res_GetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(13) Simulator channel 1
2: RES(13) Simulator channel 2
3: RES(13) Simulator channel 3
4: RES(13) Simulator channel 4
5: RES(13) Simulator channel 5
6: RES(13) Simulator channel 6

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_clearSub
pipx40_getChannelPattern

7: MUX(4) Common reference multiplexer

Models 40-262-101, 40-262-102 (6 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40 writeCalibrationFP

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

26

pipx40_writeCalibrationDate
1: RES(13) Simulator channel 1 Sim chan 1 switched

resistance elements
2: RES(13) Simulator channel 2 Sim chan 2 switched

resistance elements
3: RES(13) Simulator channel 3 Sim chan 3 switched

resistance elements
4: RES(13) Simulator channel 4 Sim chan 4 switched

resistance elements
5: RES(13) Simulator channel 5 Sim chan 5 switched

resistance elements
6: RES(13) Simulator channel 6 Sim chan 6 switched

resistance elements

Output Sub-
Unit

Applicable functions
pipx40_setChannelState,
pipx40_clearSub,
pipx40_getChannelPattern

8: MUX(18) DMM multiplexer

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

9: DIGITAL(32) Sim chan 1 digital pot element
10: DIGITAL(32) Sim chan 2 digital pot element
11: DIGITAL(32) Sim chan 3 digital pot element
12: DIGITAL(32) Sim chan 4 digital pot element
13: DIGITAL(32) Sim chan 5 digital pot element
14: DIGITAL(32) Sim chan 6 digital pot element

Refer to the 40-262 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

27

40-265 Strain Gauge Simulator

Strain Gauge Simulator models 40-265-006 and 40-265-016 contain an array of
sub-units for control and calibration.

Functions for normal operation

Output Sub-
Units

Applicable functions
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_resGetInfo
pipx40_readCalibrationDate

1: RES(64) Simulator channel 1
2: RES(64) Simulator channel 2
3: RES(64) Simulator channel 3
4: RES(64) Simulator channel 4
5: RES(64) Simulator channel 5
6: RES(64) Simulator channel 6

Output Sub-
Units

Applicable functions
pipx40_setChannelState
pipx40_setChannelPattern
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

7: SWITCH(4) Simulator channel 1 auxiliary switches
8: SWITCH(4) Simulator channel 2 auxiliary switches
9: SWITCH(4) Simulator channel 3 auxiliary switches
10: SWITCH(4) Simulator channel 4 auxiliary switches
11: SWITCH(4) Simulator channel 5 auxiliary switches
12: SWITCH(4) Simulator channel 6 auxiliary switches

A simulator channel's null-point resistance can be obtained using function:

• pipx40_resGetInfo (in its refRes argument)

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable functions
pipx40_setCalibrationPoint
pipx40 readCalibrationFP

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

28

pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

1: RES(64) Simulator channel 1 Simulator channel 1
resistance elements

2: RES(64) Simulator channel 2 Simulator channel 2
resistance elements

3: RES(64) Simulator channel 3 Simulator channel 3
resistance elements

4: RES(64) Simulator channel 4 Simulator channel 4
resistance elements

5: RES(64) Simulator channel 5 Simulator channel 5
resistance elements

6: RES(64) Simulator channel 6 Simulator channel 6
resistance elements

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

13: MUX(18) DMM multiplexer

Refer to the 40-265 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

29

40-297 Precision Resistor

40-297 Precision Resistor cards contain an array of sub-units for control and
calibration.

Model 40-297-001 (18 channels): functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(10) Precision resistor 1
2: RES(10) Precision resistor 2
3: RES(10) Precision resistor 3
4: RES(10) Precision resistor 4
5: RES(10) Precision resistor 5
6: RES(10) Precision resistor 6
7: RES(10) Precision resistor 7
8: RES(10) Precision resistor 8
9: RES(10) Precision resistor 9
10: RES(10) Precision resistor 10
11: RES(10) Precision resistor 11
12: RES(10) Precision resistor 12
13: RES(10) Precision resistor 13
14: RES(10) Precision resistor 14
15: RES(10) Precision resistor 15
16: RES(10) Precision resistor 16
17: RES(10) Precision resistor 17
18: RES(10) Precision resistor 18

Model 40-297-001 (18 channels): calibration functions

Output
Sub-Unit

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

1:
RES(10)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(10)

Precision resistor 2 PR2 switched resistance
elements

3:
RES(10)

Precision resistor 3 PR3 switched resistance
elements

4:
RES(10)

Precision resistor 4 PR4 switched resistance
elements

5: Precision resistor 5 PR5 switched resistance

Pickering Interfaces PXI VISA Driver - pipx40

30

RES(10) elements
6:
RES(10)

Precision resistor 6 PR6 switched resistance
elements

7:
RES(10)

Precision resistor 7 PR7 switched resistance
elements

8:
RES(10)

Precision resistor 8 PR8 switched resistance
elements

9:
RES(10)

Precision resistor 9 PR9 switched resistance
elements

10:
RES(10)

Precision resistor 10 PR10 switched resistance
elements

11:
RES(10)

Precision resistor 11 PR11 switched resistance
elements

12:
RES(10)

Precision resistor 12 PR12 switched resistance
elements

13:
RES(10)

Precision resistor 13 PR13 switched resistance
elements

14:
RES(10)

Precision resistor 14 PR14 switched resistance
elements

15:
RES(10)

Precision resistor 15 PR15 switched resistance
elements

16:
RES(10)

Precision resistor 16 PR16 switched resistance
elements

17:
RES(10)

Precision resistor 17 PR17 switched resistance
elements

18:
RES(10)

Precision resistor 18 PR18 switched resistance
elements

Model 40-297-002 (9 channels): functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(19) Precision resistor 1
2: RES(19) Precision resistor 2
3: RES(19) Precision resistor 3
4: RES(19) Precision resistor 4
5: RES(19) Precision resistor 5
6: RES(19) Precision resistor 6
7: RES(19) Precision resistor 7
8: RES(19) Precision resistor 8
9: RES(19) Precision resistor 9

Model 40-297-002 (9 channels): calibration functions

Output
Sub-Unit

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

31

1:
RES(19)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(19)

Precision resistor 2 PR2 switched resistance
elements

3:
RES(19)

Precision resistor 3 PR3 switched resistance
elements

4:
RES(19)

Precision resistor 4 PR4 switched resistance
elements

5:
RES(19)

Precision resistor 5 PR5 switched resistance
elements

6:
RES(19)

Precision resistor 6 PR6 switched resistance
elements

7:
RES(19)

Precision resistor 7 PR7 switched resistance
elements

8:
RES(19)

Precision resistor 8 PR8 switched resistance
elements

9:
RES(19)

Precision resistor 9 PR9 switched resistance
elements

Model 40-297-003 (6 channels): functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(28) Precision resistor 1
2: RES(28) Precision resistor 2
3: RES(28) Precision resistor 3
4: RES(28) Precision resistor 4
5: RES(28) Precision resistor 5
6: RES(28) Precision resistor 6

Model 40-297-003 (6 channels): calibration functions

Output
Sub-
Unit

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

1:
RES(28)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(28)

Precision resistor 2 PR2 switched resistance
elements

3:
RES(28)

Precision resistor 3 PR3 switched resistance
elements

4:
RES(28)

Precision resistor 4 PR4 switched resistance
elements

5:
RES(28)

Precision resistor 5 PR5 switched resistance
elements

6:
RES(28)

Precision resistor 6 PR6 switched resistance
elements

Pickering Interfaces PXI VISA Driver - pipx40

32

Refer to the 40-297 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

33

40-412-001 Digital Input-Output

The 40-412-001 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Units Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub
pipx40_setMaskState
pipx40_getMaskState
pipx40_setMaskPattern
pipx40_getMaskPattern
pipx40_clearMask

1: DIGITAL(32) Controls output SINK driver states, each bit:
0 = INACTIVE
1 = ACTIVE

2: DIGITAL(32) Controls output SOURCE driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

3: DIGITAL(12) Set input threshold 1 (12-bit binary value)
4: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

5: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
pipx40_readInputPattern

1:
INPUT(2)

Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).

Pickering Interfaces PXI VISA Driver - pipx40

34

NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is
undefined.

Refer to the 40-412 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

35

40-412-101 Digital Input-Output

The 40-412-101 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Units Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub
pipx40_setMaskState
pipx40_getMaskState
pipx40_setMaskPattern
pipx40_getMaskPattern
pipx40_clearMask

1: DIGITAL(32) Controls output SINK driver states, each bit:
0 = INACTIVE
1 = ACTIVE

2: DIGITAL(32) Controls output SOURCE driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

3: DIGITAL(12) Set input threshold 1 (12-bit binary value)
4: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Input Sub-
Units

Applicable function
pipx40_readInputPattern

1:
INPUT(64)

Gets levels of all 32 input channels, relative to the
set thresholds. All input channels are sampled
synchronously.

Refer to the 40-412 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

36

40-413-001 Digital Input-Output

The 40-413-001 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Unit Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub
pipx40_setMaskState
pipx40_getMaskState
pipx40_setMaskPattern
pipx40_getMaskPattern
pipx40_clearMask

1: DIGITAL(32) Controls output (SOURCE) driver states, each
bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

2: DIGITAL(12) Set input threshold 1 (12-bit binary value)
3: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

4: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
pipx40_readInputPattern

1:
INPUT(2)

Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).
NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is

Pickering Interfaces PXI VISA Driver - pipx40

37

undefined.

Refer to the 40-413 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

38

40-413-002 Digital Input-Output

The 40-413-002 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Unit Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub
pipx40_setMaskState
pipx40_getMaskState
pipx40_setMaskPattern
pipx40_getMaskPattern
pipx40_clearMask

1: DIGITAL(32) Controls output (SINK) driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

2: DIGITAL(12) Set input threshold 1 (12-bit binary value)
3: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

4: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
pipx40_readInputPattern

1:
INPUT(2)

Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).
NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is
undefined.

Pickering Interfaces PXI VISA Driver - pipx40

39

Refer to the 40-413 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

40

40-413-003 Digital Input-Output

The 40-413-003 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Units Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub
pipx40_setMaskState
pipx40_getMaskState
pipx40_setMaskPattern
pipx40_getMaskPattern
pipx40_clearMask

1: DIGITAL(32) Controls output SINK driver states, each bit:
0 = INACTIVE
1 = ACTIVE

2: DIGITAL(32) Controls output SOURCE driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

3: DIGITAL(12) Set input threshold 1 (12-bit binary value)
4: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

5: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
pipx40_readInputPattern

1:
INPUT(2)

Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).

Pickering Interfaces PXI VISA Driver - pipx40

41

NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is
undefined.

Refer to the 40-413 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

42

41-750-001 Battery Simulator

The 41-750-001 Battery Simulator card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

1: MUX(4) PIMS multiplexer

Output Sub-
Units

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

2:
DIGITAL(96)

Current-sink setting

3:
DIGITAL(16)

Voltage output DAC
setting

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

8: DIGITAL(1) Output on/off control

Input Sub-
Unit

Applicable functions
pipx40_readInputState
pipx40_readInputPattern

1: INPUT(1) Read the Reg Limit Shutdown PXI Monitor
signal

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output Sub-
Units

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

43

4: DIGITAL(8) RDAC1 register (pot #1 volatile setting)
5: DIGITAL(8) RDAC3 register (pot #3 volatile setting)
6: DIGITAL(8) EEMEM1 register (pot #1 non-volatile

setting)
7: DIGITAL(8) EEMEM3 register (pot #3 non-volatile

setting)

Input Sub-
Units

Applicable function
pipx40_readInputPattern

2: INPUT(8) Read RDAC1 register (pot #1 volatile
setting)

3: INPUT(8) Read RDAC3 register (pot #3 volatile
setting)

Refer to the 41-750-001 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

44

41-751-001 Battery Simulator

The 41-751-001 Battery Simulator card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

1: MUX(4) PIMS multiplexer

Output Sub-
Units

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

2:
DIGITAL(48)

Current-sink setting

3:
DIGITAL(16)

Voltage output DAC
setting

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

8: DIGITAL(1) Output on/off control

Input Sub-
Unit

Applicable functions
pipx40_readInputState
pipx40_readInputPattern

1: INPUT(2) Read status signals RLSPM,
CDPM

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output Sub- Applicable functions

Pickering Interfaces PXI VISA Driver - pipx40

45

Units pipx40_setChannelPattern
pipx40_getChannelPattern

4: DIGITAL(8) RDAC2 register (pot #2 volatile setting)
5: DIGITAL(8) RDAC3 register (pot #3 volatile setting)
6: DIGITAL(8) EEMEM2 register (pot #2 non-volatile

setting)
7: DIGITAL(8) EEMEM3 register (pot #3 non-volatile

setting)
9: DIGITAL(8) RDAC1 register (pot #1 volatile setting)
10:
DIGITAL(8)

EEMEM1 register (pot #1 non-volatile
setting)

Input Sub-
Units

Applicable function
pipx40_readInputPattern

2: INPUT(8) Read RDAC2 register (pot #2 volatile
setting)

3: INPUT(8) Read RDAC3 register (pot #3 volatile
setting)

4: INPUT(8) Read RDAC1 register (pot #1 volatile
setting)

Refer to the 41-751-001 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

46

41-752-001 and 41-752-901 Battery Simulator

The 41-752-001 and 41-752-901 Battery Simulator cards contain identical arrays
of sub-units for control and calibration.

Functions for normal operation

Output
Sub-
Units

Applicable functions
pipx40_battSetVoltage
pipx40_battGetVoltage
pipx40_battSetCurrent
pipx40_battGetCurrent
pipx40_battSetEnable
pipx40_battGetEnable
pipx40_battReadInterlockState

1:
BATT(14)
2:
BATT(14)
3:
BATT(14)
4:
BATT(14)
5:
BATT(14)
6:
BATT(14)

Battery simulator channels 1
thru 6

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output Sub-
Units

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

1: BATT(14)
2: BATT(14)
3: BATT(14)
4: BATT(14)
5: BATT(14)
6: BATT(14)

Simulator channels 1
thru 6 voltage-setting
DACs (direct binary
access)

Output Sub-
Units

Applicable functions
pipx40_writeCalibration
pipx40_readCalibration

1: BATT(14) Simulator channels 1

Pickering Interfaces PXI VISA Driver - pipx40

47

2: BATT(14)
3: BATT(14)
4: BATT(14)
5: BATT(14)
6: BATT(14)

thru 6 calibration data
(14 x 16-bit values per
channel)

Output Sub-
Units

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

7:
DIGITAL(16)
8:
DIGITAL(16)
9:
DIGITAL(16)
10:
DIGITAL(16)
11:
DIGITAL(16)
12:
DIGITAL(16)

Simulator channels 1
thru 6 current-setting
DACs (direct binary
access)

Output Sub-
Unit

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_setChannelState
pipx40_getChannelState
pipx40_clearSub

13:
DIGITAL(6)

Simulator channels 1
thru 6 enable

Input Sub-
Unit

Applicable functions
pipx40_readInputPattern
pipx40_readInputState

1: INPUT(1) Global interlock state

Refer to the 41-752-001 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

48

41-753-001 Battery Simulator

The 41-753-001 Battery Simulator card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_getChannelPattern
pipx40_clearSub

1: MUX(4) PIMS multiplexer

Output Sub-
Units

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

2:
DIGITAL(96)

Current-sink setting

3:
DIGITAL(16)

Voltage output DAC
setting

11:
DIGITAL(16)

Output Resistance DAC
setting

Output Sub-
Unit

Applicable functions
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_clearSub

8: DIGITAL(1) Output on/off control

Input Sub-
Unit

Applicable functions
pipx40_readInputState
pipx40_readInputPattern

1: INPUT(2) Read status signals RLSPM,
CDPM

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Pickering Interfaces PXI VISA Driver - pipx40

49

Output Sub-
Units

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

4: DIGITAL(8) RDAC2 register (pot #2 volatile setting)
5: DIGITAL(8) RDAC3 register (pot #3 volatile setting)
6: DIGITAL(8) EEMEM2 register (pot #2 non-volatile

setting)
7: DIGITAL(8) EEMEM3 register (pot #3 non-volatile

setting)
9: DIGITAL(8) RDAC1 register (pot #1 volatile setting)
10:
DIGITAL(8)

EEMEM1 register (pot #1 non-volatile
setting)

Input Sub-
Units

Applicable function
pipx40_readInputPattern

2: INPUT(8) Read RDAC2 register (pot #2 volatile
setting)

3: INPUT(8) Read RDAC3 register (pot #3 volatile
setting)

4: INPUT(8) Read RDAC1 register (pot #1 volatile
setting)

Refer to the 41-753-001 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

50

50-297 Precision Resistor

50-297 Precision Resistor cards contain an array of sub-units for control and
calibration.

Model 50-297-001 (18 channels): functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(10) Precision resistor 1
2: RES(10) Precision resistor 2
3: RES(10) Precision resistor 3
4: RES(10) Precision resistor 4
5: RES(10) Precision resistor 5
6: RES(10) Precision resistor 6
7: RES(10) Precision resistor 7
8: RES(10) Precision resistor 8
9: RES(10) Precision resistor 9
10: RES(10) Precision resistor 10
11: RES(10) Precision resistor 11
12: RES(10) Precision resistor 12
13: RES(10) Precision resistor 13
14: RES(10) Precision resistor 14
15: RES(10) Precision resistor 15
16: RES(10) Precision resistor 16
17: RES(10) Precision resistor 17
18: RES(10) Precision resistor 18

Model 50-297-001 (18 channels): calibration functions

Output
Sub-Unit

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

1:
RES(10)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(10)

Precision resistor 2 PR2 switched resistance
elements

3:
RES(10)

Precision resistor 3 PR3 switched resistance
elements

4:
RES(10)

Precision resistor 4 PR4 switched resistance
elements

5: Precision resistor 5 PR5 switched resistance

Pickering Interfaces PXI VISA Driver - pipx40

51

RES(10) elements
6:
RES(10)

Precision resistor 6 PR6 switched resistance
elements

7:
RES(10)

Precision resistor 7 PR7 switched resistance
elements

8:
RES(10)

Precision resistor 8 PR8 switched resistance
elements

9:
RES(10)

Precision resistor 9 PR9 switched resistance
elements

10:
RES(10)

Precision resistor 10 PR10 switched resistance
elements

11:
RES(10)

Precision resistor 11 PR11 switched resistance
elements

12:
RES(10)

Precision resistor 12 PR12 switched resistance
elements

13:
RES(10)

Precision resistor 13 PR13 switched resistance
elements

14:
RES(10)

Precision resistor 14 PR14 switched resistance
elements

15:
RES(10)

Precision resistor 15 PR15 switched resistance
elements

16:
RES(10)

Precision resistor 16 PR16 switched resistance
elements

17:
RES(10)

Precision resistor 17 PR17 switched resistance
elements

18:
RES(10)

Precision resistor 18 PR18 switched resistance
elements

Model 50-297-002 (9 channels): functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(19) Precision resistor 1
2: RES(19) Precision resistor 2
3: RES(19) Precision resistor 3
4: RES(19) Precision resistor 4
5: RES(19) Precision resistor 5
6: RES(19) Precision resistor 6
7: RES(19) Precision resistor 7
8: RES(19) Precision resistor 8
9: RES(19) Precision resistor 9

Model 50-297-002 (9 channels): calibration functions

Output
Sub-Unit

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

52

1:
RES(19)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(19)

Precision resistor 2 PR2 switched resistance
elements

3:
RES(19)

Precision resistor 3 PR3 switched resistance
elements

4:
RES(19)

Precision resistor 4 PR4 switched resistance
elements

5:
RES(19)

Precision resistor 5 PR5 switched resistance
elements

6:
RES(19)

Precision resistor 6 PR6 switched resistance
elements

7:
RES(19)

Precision resistor 7 PR7 switched resistance
elements

8:
RES(19)

Precision resistor 8 PR8 switched resistance
elements

9:
RES(19)

Precision resistor 9 PR9 switched resistance
elements

Model 50-297-003 (6 channels): functions for normal operation

Output Sub-
Unit

Applicable functions
pipx40_resGetInfo
pipx40_resGetResistance
pipx40_resSetResistance
pipx40_clearSub
pipx40_readCalibrationDate

1: RES(28) Precision resistor 1
2: RES(28) Precision resistor 2
3: RES(28) Precision resistor 3
4: RES(28) Precision resistor 4
5: RES(28) Precision resistor 5
6: RES(28) Precision resistor 6

Model 50-297-003 (6 channels): calibration functions

Output
Sub-
Unit

Applicable functions
pipx40_setCalibrationPoint
pipx40_readCalibrationFP
pipx40_writeCalibrationFP
pipx40_writeCalibrationDate

Applicable functions
pipx40_setChannelPattern
pipx40_getChannelPattern

1:
RES(28)

Precision resistor 1 PR1 switched resistance
elements

2:
RES(28)

Precision resistor 2 PR2 switched resistance
elements

3:
RES(28)

Precision resistor 3 PR3 switched resistance
elements

4:
RES(28)

Precision resistor 4 PR4 switched resistance
elements

5:
RES(28)

Precision resistor 5 PR5 switched resistance
elements

6:
RES(28)

Precision resistor 6 PR6 switched resistance
elements

Pickering Interfaces PXI VISA Driver - pipx40

53

Refer to the 50-297 User Manual for more detail.

Pickering Interfaces PXI VISA Driver - pipx40

54

VISA Standard Functions

Pickering Interfaces PXI VISA Driver - pipx40

55

Initialise

pipx40_init

VB Function pipx40_init (ByVal rsrcName As String, ByVal id_query
As Boolean, ByVal reset_instr As Boolean, ByRef vi As
Long) As Long

C++ ViStatus pipx40_init (ViRsrc rsrcName, ViBoolean id_query,
ViBoolean reset_instr, ViPSession vi);

Parameter I/O Description

rsrcName in Instrument description (resource name)

id_query in if VI_TRUE then perform in-system verification; if
VI_FALSE then do not perform in-system
verification. See note below.

reset_instr in if VI_TRUE then perform reset operation; if
VI_FALSE then do not perform reset operation. See
note below.

vi out Instrument handle

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

This function establishes communications with the instrument.

Remarks

The values of the id_query and reset_instr parameters are ignored: instrument
identity is always checked, and the instrument is always reset when it is
opened. No error is given if these options are not specified in the function call.

Pickering Interfaces PXI VISA Driver - pipx40

56

If the initialisation function encounters an error, an error code return value will be
sent, any valid sessions obtained by pipx40_init will be closed and the output
parameter vi is set to zero (VI_NULL).

Pickering Interfaces PXI VISA Driver - pipx40

57

Utility

pipx40_error_message

VB Function pipx40_error_message (ByVal vi As Long, ByVal
status_code As Long, ByVal message As String) As Long

C++ ViStatus pipx40_error_message (ViSession vi, ViStatus
status_code, ViString message);

Parameter I/O Description

vi in Instrument handle

status_code in Instrument driver error code

message out Error message

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

This function translates the error return value from a pipx40 instrument driver
function to a user-readable string.

Remarks

A more secure version of this function exists as pipx40_errorMessage_s.

The length of the message string will not exceed the value of driver constant
pipx40_MAX_ERR_STR.

Pickering Interfaces PXI VISA Driver - pipx40

58

pipx40_error_query

VB Function pipx40_error_query (ByVal vi As Long, ByRef error_code
As Long, ByVal error_message As String) As Long

C++ ViStatus pipx40_error_query (ViSession vi, ViPInt32 error_code,
ViString error_message);

Parameter I/O Description

vi in Instrument handle

error_code out Instrument error code

error_message out Error message

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Return an error code and corresponding message from the instrument’s error
queue.

Remarks

A more secure version of this function exists as pipx40_errorQuery_s.

This feature is not supported by the instrument, and the function returns the
status code VI_WARN_NSUP_ERROR_QUERY.

Pickering Interfaces PXI VISA Driver - pipx40

59

pipx40_reset

VB Function pipx40_reset (ByVal vi As
Long) As Long

C++ ViStatus pipx40_reset (ViSession
vi);

Parameter I/O Description

vi in Instrument handle

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Resets the instrument to default state.

Remarks

All outputs of all the card's sub-units are:

• cleared, as by pipx40_clearSub
• unmasked, as by pipx40_clearMask

Pickering Interfaces PXI VISA Driver - pipx40

60

pipx40_revision_query

VB Function pipx40_revision_query (ByVal vi As Long, ByVal
driver_rev As String, ByVal instr_rev As String) As
Long

C++ ViStatus pipx40_revision_query (ViSession vi, ViString
driver_rev, ViString instr_rev);

Parameter I/O Description

vi in Instrument handle

driver_rev out Driver revision

instr_rev out Instrument revision

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

This function returns the instrument driver revision and instrument revision
codes. The instr_rev value represents the hardware/firmware version of the unit.

Remarks

A more secure version of this function exists as pipx40_revisionQuery_s.

The lengths of the driver_rev and instr_rev strings will not exceed the values of
driver constants pipx40_MAX_DRIVER_REV_STR and
pipx40_MAX_INSTR_REV_STR respectively.

Pickering Interfaces PXI VISA Driver - pipx40

61

pipx40_self_test

VB Function pipx40_self_test (ByVal vi As Long, ByRef test_result
As Integer, ByVal test_message As String) As Long

C++ ViStatus pipx40_self_test (ViSession vi, ViPInt16 test_result,
ViString test_message);

Parameter I/O Description

vi in Instrument handle

test_result out Numeric result from self-test operation

test_message out Self-test status message

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

This function causes the instrument to perform a self-test and returns the result
of that self-test.

Remarks

A more secure version of this function exists as pipx40_selfTest_s.

The test_result parameter is a numeric code for the test result. The test_message
parameter returns a self-test status message. The codes are listed in the table
below.

Driver constant Numeric
Value

Description

 0 Self-test passed with no
errors

Pickering Interfaces PXI VISA Driver - pipx40

62

pipx40_FAULT_UNKNOWN 1 Unspecified fault

pipx40_FAULT_WRONG_DRIVER 2 Incompatible software driver
version

pipx40_FAULT_EEPROM_ERROR 3 EEPROM data error

pipx40_FAULT_HARDWARE 4 Hardware defect

pipx40_FAULT_PARITY 5 Parity error

pipx40_FAULT_CARD_INACCESSIBLE 6 Card cannot be accessed
(failed/removed/unpowered)

pipx40_FAULT_UNCALIBRATED 7 One or more sub-units is
uncalibrated

pipx40_FAULT_CALIBRATION_DUE 8 One or more sub-units is due
for calibration

The length of the test_message string will not exceed the value of the driver
constant pipx40_MAX_SELF_TEST_STR.

Diagnostic information on fault conditions indicated in the test result can be
obtained using pipx40_getDiagnostic.

Pickering Interfaces PXI VISA Driver - pipx40

63

Close

pipx40_close

VB Function pipx40_close (ByVal vi As
Long) As Long

C++ ViStatus pipx40_close (ViSession vi
);

Parameter I/O Description

 vi in Instrument handle

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Terminate the software connection to the instrument and deallocate system
resources associated with the instrument.

Pickering Interfaces PXI VISA Driver - pipx40

64

Card Specific Functions

Pickering Interfaces PXI VISA Driver - pipx40

65

Information and Status

Information and Status

This section details the use of functions for obtaining card and sub-unit
information. Most of these functions are applicable to all card or sub-unit types.

Functions are provided to:

• Obtain a card's identification string: pipx40_getCardId
• Obtain a card's status flags: pipx40_getCardStatus
• Obtain a card's diagnostic information string: pipx40_getDiagnostic
• Discover the numbers of input and output sub-units on a card:

pipx40_getSubCounts
• Obtain sub-unit information (numeric format): pipx40_getSubInfo
• Obtain sub-unit information (string format): pipx40_getSubType
• Obtain an output sub-unit's closure limit value: pipx40_getClosureLimit
• Obtain an output sub-unit's settling time value: pipx40_getSettlingTime

Pickering Interfaces PXI VISA Driver - pipx40

66

pipx40_getCardId

VB Function pipx40_getCardId (ByVal vi As Long, ByVal id As
String) As Long

C++ ViStatus pipx40_getCardId (ViSession vi, ViString id);

Parameter I/O Description

vi in Instrument handle

id out Instrument
identification string

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the identification string of the specified card. The string contains these
elements:

PICKERING INTERFACES,<type code>,<serial number>,<revision code>.

The <revision code> value represents the hardware/firmware version of the unit.

Remarks

A more secure version of this function exists as pipx40_getCardId_s.

The length of the id string will not exceed the value of driver constant
pipx40_MAX_ID_STR.

Visual Basic Note

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

Pickering Interfaces PXI VISA Driver - pipx40

67

VBstring = LEFT$(id, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

68

pipx40_getCardStatus

VB Function pipx40_getCardStatus (ByVal vi As Long, ByRef
status As Long) As Long

C++ ViStatus pipx40_getCardStatus (ViSession vi, ViPUInt32
status);

Parameter I/O Description

vi in Instrument handle

status out A value representing the card's
status flags

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the current status flags for the specified card.

Remarks

The status value is composed of the sum of a number of individual flag bits.

A zero value (pipx40_STAT_OK) indicates that the card is functional and its
outputs are stable.

Driver constant Bit value -
hexadecimal

Description

pipx40_STAT_NO_CARD 80000000 The specified session is
not associated with a
Pickering card

pipx40_STAT_WRONG_DRIVER 40000000 Card requires a more
recent version of the
software driver

Pickering Interfaces PXI VISA Driver - pipx40

69

pipx40_STAT_EEPROM_ERR 20000000 Card EEPROM fault

pipx40_STAT_DISABLED 10000000 Card disabled

pipx40_STAT_BUSY 04000000 Card operations not yet
completed

pipx40_STAT_HW_FAULT 02000000 Card hardware defect

pipx40_STAT_PARITY_ERROR 01000000 PCIbus parity error

pipx40_STAT_CARD_INACCESSIBLE 00080000 Card cannot be accessed
(failed/removed/unpowered)

pipx40_STAT_UNCALIBRATED 00040000 One or more sub-units is
uncalibrated

pipx40_STAT_CALIBRATION_DUE 00020000 One or more sub-units is
due for calibration

Certain status bits are relevant only for specific classes of sub-unit, or for those
having particular characteristics.

Diagnostic information on fault conditions indicated in the status value can be
obtained using pipx40_getDiagnostic.

VISA may not allow a card that has experienced a PCIbus parity error to be
opened, so in practice pipx40_STAT_PARITY_ERROR can never be reported.

Pickering Interfaces PXI VISA Driver - pipx40

70

pipx40_getClosureLimit

VB Function pipx40_getClosureLimit (ByVal vi As Long, ByVal
subUnit As Long, ByRef limit As Long) As Long

C++ ViStatus pipx40_getClosureLimit (ViSession vi, ViUInt32
subUnit, ViPUInt32 limit);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

limit out The maximum number of channel closures permitted

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the maximum number of channels that may be activated simultaneously
in the specified sub-unit.

Remarks

A single-channel multiplexer (MUX type) allows only one channel to be closed at
any time. In some other models such as high-density matrix types a limit is
imposed to prevent overheating; although it is possible to disable the limit for
these types (see pipx40_setDriverMode), doing so is not recommended.

Pickering Interfaces PXI VISA Driver - pipx40

71

pipx40_getDiagnostic

VB Function pipx40_getDiagnostic (ByVal vi As Long, ByVal message
As String) As Long

C++ ViStatus pipx40_getDiagnostic (ViSession vi, ViString
message);

Parameter I/O Description

vi in Instrument handle

message out Instrument diagnostic
string

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the diagnostic string of the specified card, giving expanded information
on any fault conditions indicated by the pipx40_getCardStatus value or
pipx40_self_test result.

Remarks

A more secure version of this function exists as pipx40_getDiagnostic_s.

The result string may include embedded newline characters, coded as ASCII
linefeed (0Ah).

The length of the result string will not exceed the value of driver constant
pipx40_MAX_DIAG_LENGTH.

Warning

Formatting and content of the diagnostic string may change as enhanced
diagnostic features are made available. It should therefore not be interpreted
programatically.

Pickering Interfaces PXI VISA Driver - pipx40

72

Visual Basic Notes

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(message, character_count).

If the diagnostic string is to be displayed in Visual Basic, any embedded linefeed
characters (0Ah) should be expanded to vbCrLf.

Pickering Interfaces PXI VISA Driver - pipx40

73

pipx40_getSettlingTime

VB Function pipx40_getSettlingTime (ByVal vi As Long, ByVal
subUnit As Long, ByRef ti As Long) As Long

C++ ViStatus pipx40_getSettlingTime (ViSession vi, ViUInt32
subUnit, ViPUInt32 ti);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

ti out The settling time value, in microseconds

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a sub-unit's settling time (or debounce period - the time taken for its
switches to stabilise).

Remarks

By default, pipx40 driver functions retain control during this period so that
switches are guaranteed to have stabilised on completion. This mode of operation
can be overridden if required - see pipx40_setDriverMode.

Pickering Interfaces PXI VISA Driver - pipx40

74

pipx40_getSubCounts

VB Function pipx40_getSubCounts (ByVal vi As Long, ByRef inSubs As
Long, ByRef outSubs As Long) As Long

C++ ViStatus pipx40_getSubCounts (ViSession vi, ViPUInt32 inSubs,
ViPUInt32 outSubs);

Parameter I/O Description

vi in Instrument handle

inSubs out Pointer/reference to variable to receive the number
of INPUT sub-units

outSubs out Pointer/reference to variable to receive the number
of OUTPUT sub-units

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the numbers of input and output sub-units implemented on the specified
card.

Pickering Interfaces PXI VISA Driver - pipx40

75

pipx40_getSubInfo

VB Function pipx40_getSubInfo (ByVal vi As Long, ByVal subUnit As
Long, ByVal out As Boolean, ByRef subType As Long,
ByRef rows As Long, ByRef columns As Long) As Long

C++ ViStatus pipx40_getSubInfo (ViSession vi, ViUInt32 subUnit,
ViBoolean out, ViPUInt32 subType, ViPUInt32 rows,
ViPUInt32 columns);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

out in sub-unit function: 0 for INPUT, 1 for OUTPUT

subType out pointer to variable to receive type code

rows out pointer to variable to receive row count

columns out pointer to variable to receive column count

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a type description of a sub-unit, as numeric values.

Remarks

Row and column values give the dimensions of the sub-unit. For all types other
than matrices the column value contains the significant dimension: their row
value is always 1.

Input sub-units are always indicated with a type code of 1.

Pickering Interfaces PXI VISA Driver - pipx40

76

Output sub-unit type codes are:

Driver constant subType
value

Description

pipx40_TYPE_SW 1 Uncommitted switches

pipx40_TYPE_MUX 2 Multiplexer, single-
channel only

pipx40_TYPE_MUXM 3 Multiplexer, multi-
channel

pipx40_TYPE_MAT 4 Matrix, LF

pipx40_TYPE_MATR 5 Matrix, RF

pipx40_TYPE_DIG 6 Digital outputs

pipx40_TYPE_RES 7 Programmable resistor

pipx40_TYPE_ATTEN 8 Programmable RF
attenuator - see note

pipx40_TYPE_PSUDC 9 Power supply, DC - see
note

pipx40_TYPE_BATT 10 Battery simulator

pipx40_TYPE_VSOURCE 11 Programmable voltage
source

Pickering Interfaces PXI VISA Driver - pipx40

77

pipx40_TYPE_MATP 12 Matrix with restricted
operating modes

Note that for some types additional information is obtainable using alternate
functions:

• Programmable RF attenuator: pipx40_attenGetInfo
• Power supply: pipx40_psuGetInfo

Pickering Interfaces PXI VISA Driver - pipx40

78

pipx40_getSubStatus

VB Function pipx40_getSubStatus (ByVal vi As Long, ByVal subUnit
As Long, ByRef status As Long) As Long

C++ ViStatus pipx40_getSubStatus (ViSession vi, ViUInt32 subUnit,
ViPUInt32 status);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

status out A value representing the sub-unit's status flags

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the current status flags for the specified sub-unit.

Remarks

The status value is composed of the sum of a number of individual flag bits.

A zero value (pipx40_STAT_OK) indicates that the sub-unit is functional and its
outputs are stable.

Driver constant Bit value -
hexadecimal

Description

pipx40_STAT_NO_CARD 80000000 The specified session is
not associated with a
Pickering card

pipx40_STAT_WRONG_DRIVER 40000000 Card requires a more
recent version of the

Pickering Interfaces PXI VISA Driver - pipx40

79

software driver

pipx40_STAT_EEPROM_ERR 20000000 Card EEPROM fault

pipx40_STAT_DISABLED 10000000 Card disabled

pipx40_STAT_NO_SUB 08000000 Card has no sub-unit with
specified number

pipx40_STAT_BUSY 04000000 Sub-unit operations not
yet completed

pipx40_STAT_HW_FAULT 02000000 Card hardware defect

pipx40_STAT_PARITY_ERROR 01000000 PCIbus parity error

pipx40_STAT_PSU_INHIBITED 00800000 PSU sub-unit - supply is
disabled (by software)

pipx40_STAT_PSU_SHUTDOWN 00400000 PSU sub-unit - supply is
shutdown (due to overload)

pipx40_STAT_PSU_CURRENT_LIMIT 00200000 PSU sub-unit - supply is
operating in current-
limited mode

pipx40_STAT_CORRUPTED 00100000 Sub-unit logical state is
corrupted

pipx40_STAT_CARD_INACCESSIBLE 00080000 Card cannot be accessed
(failed/removed/unpowered)

pipx40_STAT_UNCALIBRATED 00040000 Sub-unit is uncalibrated

pipx40_STAT_CALIBRATION_DUE 00020000 Sub-unit is due for
calibration

Certain status bits are relevant only for specific classes of sub-unit, or for those
having particular characteristics.

Note that certain card-level conditions that affect the sub-unit's functionality are
also reported.

Pickering Interfaces PXI VISA Driver - pipx40

80

Diagnostic information on fault conditions indicated in the status value can be
obtained using pipx40_getDiagnostic.

VISA may not allow a card that has experienced a PCIbus parity error to be
opened, so in practice pipx40_STAT_PARITY_ERROR can never be reported.

Pickering Interfaces PXI VISA Driver - pipx40

81

pipx40_getSubType

VB Function pipx40_getSubType (ByVal vi As Long, ByVal subUnit As
Long, ByVal out As Boolean, ByVal subType As String)
As Long

C++ ViStatus pipx40_getSubType (ViSession vi, ViUInt32 subUnit,
ViBoolean out, ViString subType);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

out in sub-unit function: 0 for INPUT, 1 for OUTPUT

subType out character string to receive the result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a type description of a sub-unit, as a text string.

subType string Description

INPUT(<size>) Digital inputs

SWITCH(<size>) Uncommitted switches

Pickering Interfaces PXI VISA Driver - pipx40

82

MUX(<size>) Multiplexer, single-
channel only

MUXM(<size>) Multiplexer, multi-
channel

MATRIX(<columns>X<rows>) Matrix, LF

MATRIXR(<columns>X<rows>) Matrix, RF

DIGITAL(<size>) Digital outputs

RES(<size>) Programmable resistor

ATTEN(<number of pads>) Programmable RF
attenuator

PSUDC(0) Power supply, DC

BATT(<voltage DAC
resolution, bits>)

Battery simulator

VSOURCE(<voltage DAC
resolution, bits>)

Programmable voltage
source

MATRIXP(<columns>X<rows>) Matrix with restricted
operating modes

Note that for some types additional information is obtainable using alternate
functions:

• Programmable RF attenuator: pipx40_attenGetType
• Power supply: pipx40_psuGetType

Remarks

Pickering Interfaces PXI VISA Driver - pipx40

83

A more secure version of this function exists as pipx40_getSubType_s.

The length of the result string will not exceed the value of driver constant
pipx40_MAX_SUB_TYPE_STR.

Visual Basic Note

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(subType, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

84

Switching and General Purpose Output

Switching and General Purpose Output

This section details the use of functions that are applicable to most output sub-
unit types.

Note that although these functions may be used with them, some sub-unit types -
for example matrix and programmable RF attenuator - are also served by specific
functions offering more straightforward control.

Functions are provided to:

• Clear all output channels of a Pickering card: pipx40_clearCard
• Clear all output channels of a sub-unit: pipx40_clearSub
• Open or close a single output channel: pipx40_setChannelState
• Set a sub-unit's output pattern: pipx40_setChannelPattern
• Obtain the state of a single output channel: pipx40_getChannelState
• Obtain a sub-unit's output pattern: pipx40_setChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

85

pipx40_clearCard

VB Function pipx40_clearCard (ByVal vi As
Long) As Long

C++ ViStatus pipx40_clearCard (ViSession
vi);

Parameter I/O Description

vi in Instrument
handle

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Clears (de-energises or sets to logic '0') all output channels of all sub-units on the
card.

Pickering Interfaces PXI VISA Driver - pipx40

86

pipx40_clearSub

VB Function pipx40_clearSub (ByVal vi As Long, ByVal subUnit
As Long) As Long

C++ ViStatus pipx40_clearSub (ViSession vi, ViUInt32
subUnit);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Clears (de-energises or sets to logic '0') all output channels of a sub-unit.

Pickering Interfaces PXI VISA Driver - pipx40

87

pipx40_getChannelPattern

VB Function pipx40_getChannelPattern (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long) As Long

C++ ViStatus pipx40_getChannelPattern (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) to receive the result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the state of all output channels of a sub-unit.

Remarks

A more secure version of this function exists as pipx40_getChannelPattern_s.

The result fills the number of least significant bits corresponding to the size of the
sub-unit.

For a Matrix sub-unit, the result is folded into the vector on its row-axis. See Data
formats.

Warning

Pickering Interfaces PXI VISA Driver - pipx40

88

The data array pointed to must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

pipx40_getChannelPattern(vi, subUnit, pattern)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

pipx40_getChannelPattern(vi, subUnit, pattern(0))

Example Code

See the description of pipx40_setChannelPattern for example code using a
pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

89

pipx40_getChannelState

VB Function pipx40_getChannelState (ByVal vi As Long, ByVal
subUnit As Long, ByVal channel As Long, ByRef state As
Boolean) As Long

C++ ViStatus pipx40_getChannelState (ViSession vi, ViUInt32
subUnit, ViUInt32 channel, ViPBoolean state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

channel in Channel whose state is to be reported

state out Pointer/reference to variable to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads the current state of the specified output channel (VI_OFF = open or logic
'0', VI_ON = closed or logic '1').

Pickering Interfaces PXI VISA Driver - pipx40

90

pipx40_setChannelPattern

VB Function pipx40_setChannelPattern (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long) As Long

C++ ViStatus pipx40_setChannelPattern (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) containing the bit-pattern to be written

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets all output channels of a sub-unit to the supplied bit-pattern.

Remarks

A more secure version of this function exists as pipx40_setChannelPattern_s.

The number of least significant bits corresponding to the size of the sub-unit are
written.

For a Matrix sub-unit, the data is folded into the vector on its row-axis. See Data
formats.

In some high-density cards the number of simultaneous channel closures that can
be made is restricted in order to prevent overheating. If the number of closures

Pickering Interfaces PXI VISA Driver - pipx40

91

specified would exceed this limit an error is reported. The maximum number of
closures permitted can be obtained using pipx40_getClosureLimit. Limit values
are such that they should not impact on normal operations. Although it is possible
to override the closure limit using pipx40_setDriverMode this is not
recommended as overheating could endanger both the card itself and the system
in which it is installed.

In the case of a single-channel multiplexer (MUX type) sub-unit this function will
only permit writing an array of nulls to clear it. MUX sub-units are more
conveniently operated using pipx40_setChannelState and pipx40_clearSub.

Warning

The data array pointed to must contain sufficient bits to represent the bit-pattern
for the specified sub-unit, or undefined data will be written to the more significant
bits.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

pipx40_setChannelPattern(vi, subUnit, pattern)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

pipx40_setChannelPattern(vi, subUnit, pattern(0))

Example Code

Visual Basic Code Sample

Visual C++ Code Sample

Pickering Interfaces PXI VISA Driver - pipx40

92

pipx40_setChannelState

VB Function pipx40_setChannelState (ByVal vi As Long, ByVal
subUnit As Long, ByVal channel As Long, ByVal state As
Boolean) As Long

C++ ViStatus pipx40_setChannelState (ViSession vi, ViUInt32
subUnit, ViUInt32 channel, ViBoolean state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

channel in Numeric variable indicating which channel will be
affected

state in A Boolean indicating type of action, VI_ON to
energise, VI_OFF to de-energise

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Energises or de-energises a single output channel. For a digital output, state =
VI_ON sets logic '1'.

Remarks

For a single-channel multiplexer (MUX type), closing a channel results in
automatic disconnection of the previously closed channel, if any.

In some high-density cards the number of simultaneous channel closures that can
be made is restricted in order to prevent overheating. If this limit is exceeded no
further closures can be made and an error is reported. The maximum number of
closures permitted can be obtained using pipx40_getClosureLimit. Limit values
are such that they should not impact on normal operations. Although it is possible
to override the closure limit using pipx40_setDriverMode this is not

Pickering Interfaces PXI VISA Driver - pipx40

93

recommended as overheating could endanger both the card itself and the system
in which it is installed.

Pickering Interfaces PXI VISA Driver - pipx40

94

Specialised Switching

Specialised Switching

This section details the use of functions specific to particular types of switching
sub-unit (uncommitted switches, multiplexer, matrix and digital output types).

Matrix operations

• Open or close a single matrix crosspoint: pipx40_setCrosspointState
• Obtain the state of a single matrix crosspoint: pipx40_getCrosspointState
• Obtain/set the state of an individual switch: pipx40_operateSwitch
• Obtain sub-unit attribute values: pipx40_getSubAttribute

Pickering Interfaces PXI VISA Driver - pipx40

95

pipx40_getCrosspointState

VB Function pipx40_getCrosspointState (ByVal vi As Long, ByVal
subUnit As Long, ByVal row As Long, ByVal column As
Long, ByRef state As Boolean) As Long

C++ ViStatus pipx40_getCrosspointState (ViSession vi, ViUInt32
subUnit, ViUInt32 row, ViUInt32 column, ViPBoolean
state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

row in Row (Y) location of the crosspoint whose state is to
be reported

column in Column (X) location of the crosspoint whose state is
to be reported

state out Pointer/reference to variable to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads the current state of the specified matrix crosspoint (VI_OFF = open, VI_ON
= closed).

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized channel-number method employed by pipx40_getChannelState. It
offers more straightforward matrix operation, and avoids the need for re-coding if
a matrix card is replaced by one having different dimensions.

Pickering Interfaces PXI VISA Driver - pipx40

96

pipx40_operateSwitch

VB Function pipx40_operateSwitch (ByVal vi As Long, ByVal subUnit
As Long, ByVal switchFunc As Long, ByVal segNum As
Long, ByVal switchNum As Long, ByVal subSwitch As
Long, ByVal switchAction As Long, ByRef state As
Boolean) As Long

C++ ViStatus pipx40_operateSwitch (ViSession vi, ViUInt32 subUnit,
ViUInt32 switchFunc, ViUInt32 segNum, ViUInt32
switchNum, ViUInt32 subSwitch, ViUInt32 switchAction,
ViPBoolean state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

switchFunc in A code indicating the functional group of the
switch

segNum in The segment in which the switch is located

switchNum in The logical number of the switch

subSwitch in The logical sub-switch

switchAction in A code indicating the action to perform

state out The state of the switch (after performing any
action)

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Pickering Interfaces PXI VISA Driver - pipx40

97

This function obtains, and optionally sets, the state of a switch. It allows explicit
access to the individual switches making up a sub-unit, in types where their
operation is normally handled automatically by the driver. The main purpose of
this is in implementing fault diagnostic programs for such types; it can also be
used where normal automated behaviour does not suit an application.

Applicable sub-unit types

This function is only usable with MATRIX and MATRIXP sub-units. For further
information about matrix auto-isolation and auto-loopthru features see:
segmented matrix, unsegmented matrix.

switchFunc Value

A value indicating the functional group of the switch to be accessed.

Value Ident Function

0 pipx40_SW_FUNC_CHANNEL A channel (matrix
crosspoint) switch

1 pipx40_SW_FUNC_X_ISO A matrix X-isolation
switch

2 pipx40_SW_FUNC_Y_ISO A matrix Y-isolation
switch

3 pipx40_SW_FUNC_X_LOOPTHRU A matrix X-loopthru
switch

4 pipx40_SW_FUNC_Y_LOOPTHRU A matrix Y-loopthru
switch

5 pipx40_SW_FUNC_X_BIFURCATION A matrix X-
bifurcation switch

6 pipx40_SW_FUNC_Y_BIFURCATION A matrix Y-
bifurcation switch

segNum Value

Pickering Interfaces PXI VISA Driver - pipx40

98

The segment location of the switch. The numbers and sizes of segments on each
matrix axis can be obtained using pipx40_getSubAttribute.

In an unsegmented matrix, use segNum = 1.

In a segmented matrix, segment numbers for crosspoint and isolation switches
are determined logically.

switchNum Value

The number of the switch in its functional group (unity-based).

For channel (crosspoint) switches, the switch number can be either:

• if segNum is zero, the global channel number of the switch (see channel
number)

• if segNum is non-zero, the segment-local number of the switch, calculated
in a similar way to the above

subSwitch Value

The number of the subswitch to operate (unity-based). This parameter caters for
a situation in which a logical channel, isolation or loopthru switch is served by
more than one physical relay (as for example when 2-pole operation is
implemented using independently-driven single-pole relays).

The numbers of subswitches for each functional group can be obtained using
pipx40_getSubAttribute.

switchAction Value

A code indicating the action to be performed.

Value Ident Function

0 pipx40_SW_ACT_NONE No switch change - just set
state result

1 pipx40_SW_ACT_OPEN Open switch

2 pipx40_SW_ACT_CLOSE Close switch

Pickering Interfaces PXI VISA Driver - pipx40

99

Loopthru switches

Loopthru switches are initialised by the driver to a closed state, which may mean
that they are either energised or de-energised depending upon their type. In
normal automated operation loopthru switches open when any crosspoint on their
associated line is closed. Actions pipx40_SW_ACT_CLOSE and
pipx40_SW_ACT_OPEN close or open loopthru switch contacts as their names
imply.

Operational considerations

This function can be used to alter a pre-existing switch state in a sub-unit, set up
by fuctions such as pipx40_setChannelState or pipx40_setChannelPattern.
However once the state of any switch is changed by pipx40_operateSwitch the
logical state of the sub-unit is considered to have been destroyed. This condition
is flagged in the result of pipx40_getSubStatus (bit pipx40_STAT_CORRUPTED).
Subsequent attempts to operate it using 'ordinary' switch functions such as
pipx40_setChannelState, pipx40_getChannelState etc. will fail (result
pipx40_ERROR_STATE_CORRUPT). Normal operation can be restored by clearing
the sub-unit using pipx40_clearSub or pipx40_clearCard.

Pickering Interfaces PXI VISA Driver - pipx40

100

pipx40_setCrosspointState

VB Function pipx40_setCrosspointState (ByVal vi As Long, ByVal
subUnit As Long, ByVal row As Long, ByVal column As
Long, ByVal state As Boolean) As Long

C++ ViStatus pipx40_setCrosspointState (ViSession vi, ViUInt32
subUnit, ViUInt32 row, ViUInt32 column, ViBoolean
state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

row in Numeric variable indicating the row (Y) location of
the crosspoint to be affected

column in Numeric variable indicating the column (X) location
of the crosspoint to be affected

state in A Boolean indicating type of action, VI_ON to
energise, VI_OFF to de-energise

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Energises or de-energises a single matrix crosspoint.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized channel-number method employed by pipx40_setChannelState. It
offers more straightforward matrix operation, and avoids the need for re-coding if
a matrix card is replaced by one having different dimensions.

Related Matrix Functions

pipx40_getCrosspointState

Pickering Interfaces PXI VISA Driver - pipx40

101

pipx40_setCrosspointMask

pipx40_getCrosspointMask

Remarks

In some high-density cards the number of simultaneous channel closures that can
be made is restricted in order to prevent overheating. If this limit is exceeded no
further closures can be made and an error is reported. The maximum number of
closures permitted can be obtained using pipx40_getClosureLimit. Limit values
are such that they should not impact on normal operations. Although it is possible
to override the closure limit using pipx40_setDriverMode this is not
recommended as overheating could endanger both the card itself and the system
in which it is installed.

Pickering Interfaces PXI VISA Driver - pipx40

102

pipx40_getSubAttribute

VB Function pipx40_getSubAttribute (ByVal vi As Long, ByVal
subUnit As Long, ByVal out As Boolean, ByVal attrCode
As Long, ByRef attrValue As Long) As Long

C++ ViStatus pipx40_getSubAttribute (ViSession vi, ViUInt32
subUnit, ViBoolean out, ViUInt32 attrCode, ViPUInt32
attrValue);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

out in sub-unit function: 0 for INPUT (unsupported), 1 for OUTPUT

attrCode in A numeric code indicating the attribute to be queried
- see below

attrValue out The value of the selected attribute

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains attributes describing the internal organisation of sub-units having auto-
isolation and/or auto-loopthru features, to facilitate operation by
pipx40_operateSwitch.

Applicable sub-unit types

This function is only usable with MATRIX and MATRIXP sub-units. For further
information about matrix auto-isolation and auto-loopthru features see:
segmented matrix, unsegmented matrix.

attrCode values

Pickering Interfaces PXI VISA Driver - pipx40

103

Value Ident Function

1 pipx40_SUB_ATTR_CHANNEL_SUBSWITCHES Gets number of
subswitches per
logical channel
(matrix crosspoint)

2 pipx40_SUB_ATTR_X_ISO_SUBSWITCHES Gets number of
subswitches per
logical X-isolator

3 pipx40_SUB_ATTR_Y_ISO_SUBSWITCHES Gets number of
subswitches per
logical Y-isolator

4 pipx40_SUB_ATTR_X_LOOPTHRU_SUBSWITCHES Gets number of
subswitches per
logical X-loopthru

5 pipx40_SUB_ATTR_Y_LOOPTHRU_SUBSWITCHES Gets number of
subswitches per
logical Y-loopthru

6 pipx40_SUB_ATTR_MATRIXP_TOPOLOGY Gets a code
representing MATRIXP
topology (see below)

0x100 pipx40_SUB_ATTR_NUM_X_SEGMENTS Gets number of X-axis
segments

0x101 pipx40_SUB_ATTR_X_SEGMENT01_SIZE Gets size of X-axis
segment 1

0x102 pipx40_SUB_ATTR_X_SEGMENT02_SIZE Gets size of X-axis
segment 2

0x103 pipx40_SUB_ATTR_X_SEGMENT03_SIZE Gets size of X-axis
segment 3

Pickering Interfaces PXI VISA Driver - pipx40

104

segment 3

0x104 pipx40_SUB_ATTR_X_SEGMENT04_SIZE Gets size of X-axis
segment 4

0x105 pipx40_SUB_ATTR_X_SEGMENT05_SIZE Gets size of X-axis
segment 5

0x106 pipx40_SUB_ATTR_X_SEGMENT06_SIZE Gets size of X-axis
segment 6

0x107 pipx40_SUB_ATTR_X_SEGMENT07_SIZE Gets size of X-axis
segment 7

0x108 pipx40_SUB_ATTR_X_SEGMENT08_SIZE Gets size of X-axis
segment 8

0x109 pipx40_SUB_ATTR_X_SEGMENT09_SIZE Gets size of X-axis
segment 9

0x10A pipx40_SUB_ATTR_X_SEGMENT10_SIZE Gets size of X-axis
segment 10

0x10B pipx40_SUB_ATTR_X_SEGMENT11_SIZE Gets size of X-axis
segment 11

0x10C pipx40_SUB_ATTR_X_SEGMENT12_SIZE Gets size of X-axis
segment 12

0x200 pipx40_SUB_ATTR_NUM_Y_SEGMENTS Gets number of Y-axis
segments

0x201 pipx40_SUB_ATTR_Y_SEGMENT01_SIZE Gets size of y-axis
segment 1

Pickering Interfaces PXI VISA Driver - pipx40

105

0x202 pipx40_SUB_ATTR_Y_SEGMENT02_SIZE Gets size of y-axis
segment 2

MATRIXP topology code values

Value Ident Function

0 pipx40_MATRIXP_NOT_APPLICABLE Sub-unit is not MATRIXP type

1 pipx40_MATRIXP_RESTRICTIVE_X MATRIXP allowing only one column
(X) connection on any row(Y)

2 pipx40_MATRIXP_RESTRICTIVE_Y MATRIXP allowing only one row
(Y) connection on any column(X)

Pickering Interfaces PXI VISA Driver - pipx40

106

Switch Masking

Switch Masking

This section details the use of switch masking functions.

Masking permits disabling operation of chosen switch channels by functions:

pipx40_setChannelState

pipx40_setCrosspointState

pipx40_setChannelPattern

pipx40_setChannelPattern_s

These functions report error pipx40_ERROR_OUTPUT_MASKED if an attempt is
made to activate a masked channel.

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Masking functions, all switching sub-unit types

Clear a sub-unit's mask: pipx40_clearMask

Mask or unmask a single output channel: pipx40_setMaskState

Set a sub-unit's mask pattern: pipx40_setMaskPattern, pipx40_setMaskPattern_s

Obtain the mask state of a single output channel: pipx40_getMaskState

Obtain a sub-unit's mask pattern: pipx40_getMaskPattern,
pipx40_getMaskPattern_s

Masking functions, matrix sub-units

Mask or unmask a single matrix crosspoint: pipx40_setCrosspointMask

Obtain the mask state of a single matrix crosspoint: pipx40_getCrosspointMask

Note

Masking only allows output channels to be disabled in the OFF state; applying a
mask to a channel that is already turned ON forces it OFF.

Pickering Interfaces PXI VISA Driver - pipx40

107

Pickering Interfaces PXI VISA Driver - pipx40

108

pipx40_clearMask

VB Function pipx40_clearMask (ByVal vi As Long, ByVal subUnit
As Long) As Long

C++ ViStatus pipx40_clearMask (ViSession vi, ViUInt32
subUnit);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Clears a sub-unit's switch mask, enabling operation of all output channels by
functions:

pipx40_setChannelState

pipx40_setCrosspointState

pipx40_setChannelPattern

pipx40_setChannelPattern_s

Pickering Interfaces PXI VISA Driver - pipx40

109

pipx40_getCrosspointMask

VB Function pipx40_getCrosspointMask (ByVal vi As Long, ByVal
subUnit As Long, ByVal row As Long, ByVal column As
Long, ByRef state As Boolean) As Long

C++ ViStatus pipx40_getCrosspointMask (ViSession vi, ViUInt32
subUnit, ViUInt32 row, ViUInt32 column, ViPBoolean
state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

row in Row (Y) location of the crosspoint whose mask state
is to be reported

column in Column (X) location of the crosspoint whose mask
state is to be reported

state out Pointer/reference to variable to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads the current state of the specified matrix crosspoint's mask (VI_OFF =
unmasked, VI_ON = masked).

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized channel-number method employed by pipx40_getMaskState. It
offers more straightforward matrix operation, and avoids the need for re-coding if
a matrix card is replaced by one having different dimensions.

Pickering Interfaces PXI VISA Driver - pipx40

110

pipx40_getMaskPattern

VB Function pipx40_getMaskPattern (ByVal vi As Long, ByVal subUnit
As Long, ByRef pattern As Long) As Long

C++ ViStatus pipx40_getMaskPattern (ViSession vi, ViUInt32 subUnit,
ViAUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the switch mask of a sub-unit.

Remarks

A more secure version of this function exists as pipx40_getMaskPattern_s.

The result fills the number of least significant bits corresponding to the size of the
sub-unit.

For a Matrix sub-unit, the result is folded into the vector on its row-axis. See Data
formats.

Warning

Pickering Interfaces PXI VISA Driver - pipx40

111

The data array pointed to must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

pipx40_getMaskPattern(vi, subUnit, pattern)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

pipx40_getMaskPattern(vi, subUnit, pattern(0))

Example Code

See the description of pipx40_setChannelPattern for example code using a
pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

112

pipx40_getMaskState

VB Function pipx40_getMaskState (ByVal vi As Long, ByVal subUnit
As Long, ByVal channel As Long, ByRef state As
Boolean) As Long

C++ ViStatus pipx40_getMaskState (ViSession vi, ViUInt32 subUnit,
ViUInt32 channel, ViPBoolean state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

channel in Channel whose mask state is to be reported

state out Pointer/reference to variable to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads the current state of the specified output channel's mask (VI_OFF =
unmasked, VI_ON = masked).

Pickering Interfaces PXI VISA Driver - pipx40

113

pipx40_setCrosspointMask

VB Function pipx40_setCrosspointMask (ByVal vi As Long, ByVal
subUnit As Long, ByVal row As Long, ByVal column As
Long, ByVal state As Boolean) As Long

C++ ViStatus pipx40_setCrosspointMask (ViSession vi, ViUInt32
subUnit, ViUInt32 row, ViUInt32 column, ViBoolean
state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

row in Row (Y) location of the crosspoint to be affected

column in Column (X) location of the crosspoint to be
affected

state in VI_ON to mask, VI_OFF to unmask

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Mask or unmask a single matrix crosspoint.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized channel-number method employed by pipx40_setMaskState. It
offers more straightforward matrix operation, and avoids the need for re-coding if
a matrix card is replaced by one having different dimensions.

Remarks

Masking disables the corresponding crosspoint for functions:

Pickering Interfaces PXI VISA Driver - pipx40

114

pipx40_setChannelState

pipx40_setCrosspointState

pipx40_setChannelPattern

pipx40_setChannelPattern_s

An error is reported by those functions if an attempt is made to activate a
masked channel.

This facility is particularly useful to guard against programming errors that could
otherwise result in damage to matrix switches or external circuits.

Pickering Interfaces PXI VISA Driver - pipx40

115

pipx40_setMaskPattern

VB Function pipx40_setMaskPattern (ByVal vi As Long, ByVal subUnit
As Long, ByRef pattern As Long) As Long

C++ ViStatus pipx40_setMaskPattern (ViSession vi, ViUInt32 subUnit,
ViAUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern in Pointer/reference to the one-dimensional array
(vector) containing the mask pattern to be set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets a sub-unit's switch mask to the supplied bit-pattern.

Remarks

A more secure version of this function exists as pipx40_setMaskPattern_s.

The number of least significant bits corresponding to the size of the sub-unit are
written into the mask. A '1' bit in the mask disables the corresponding switch for
functions:

pipx40_setChannelState

pipx40_setCrosspointState

pipx40_setChannelPattern

pipx40_setChannelPattern_s

Pickering Interfaces PXI VISA Driver - pipx40

116

An error is reported by those functions if an attempt is made to activate a
masked channel.

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

For a Matrix sub-unit, the mask data is folded into the vector on its row-axis. See
Data formats.

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error pipx40_ERROR_ILLEGAL_MASK is
given if an attempt is made to mask it.

Warning

The data array pointed to must contain sufficient bits to represent the mask
pattern for the specified sub-unit, or undefined data will be written to the more
significant bits.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

pipx40_setMaskPattern(vi, subUnit, pattern)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

pipx40_setMaskPattern(vi, subUnit, pattern(0))

Example Code

See the description of pipx40_setChannelPattern for example code using a
pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

117

pipx40_setMaskState

VB Function pipx40_setMaskState (ByVal vi As Long, ByVal subUnit
As Long, ByVal channel As Long, ByVal state As
Boolean) As Long

C++ ViStatus pipx40_setMaskState (ViSession vi, ViUInt32 subUnit,
ViUInt32 channel, ViBoolean state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

channel in Channel to be affected

state in VI_ON to mask, VI_OFF to unmask

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Mask or unmask a single output channel.

Remarks

Masking disables the corresponding channel for functions:

pipx40_setChannelState

pipx40_setCrosspointState

pipx40_setChannelPattern

pipx40_setChannelPattern_s

An error is reported by those functions if an attempt is made to activate a
masked channel.

Pickering Interfaces PXI VISA Driver - pipx40

118

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error pipx40_ERROR_ILLEGAL_MASK is
given if an attempt is made to mask it.

Pickering Interfaces PXI VISA Driver - pipx40

119

Input

Input

This section details the use of functions specific to input sub-units.

Specific functions are provided to:

• Obtain the state of a single input: pipx40_readInputState
• Obtain a sub-unit's input pattern: pipx40_readInputPattern

Pickering Interfaces PXI VISA Driver - pipx40

120

pipx40_readInputPattern

VB Function pipx40_readInputPattern (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long) As Long

C++ ViStatus pipx40_readInputPattern (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the current state of all inputs of a sub-unit.

Remarks

A more secure version of this function exists as pipx40_readInputPattern_s.

Warning

The data array pointed to must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

pipx40_readInputPattern(vi, subUnit, pattern)

Pickering Interfaces PXI VISA Driver - pipx40

121

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

pipx40_readInputPattern(vi, subUnit, pattern(0))

Example Code

See the description of pipx40_setChannelPattern for example code using a
pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

122

pipx40_readInputState

VB Function pipx40_readInputState (ByVal vi As Long, ByVal subUnit
As Long, ByVal channel As Long, ByRef state As
Boolean) As Long

C++ ViStatus pipx40_readInputState (ViSession vi, ViUInt32 subUnit,
ViUInt32 channel, ViPBoolean state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

channel in Channel to be read

state out Pointer/reference to variable to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads the current state of the specified input channel (VI_OFF = logic '0', VI_ON
= logic '1').

Pickering Interfaces PXI VISA Driver - pipx40

123

Calibration

Calibration

This section details the use of functions associated with storing calibration values
in a card's non-volatile (EEPROM) memory. This facility is only available for
certain sub-unit types, such as programmable resistors; either integer data (for
simple types) or floating-point data (for precision types) may be supported.

Specific functions are provided to:

• Retrieve an integer calibration value from non-volatile memory:
pipx40_readCalibration

• Store an integer calibration value in non-volatile memory:
pipx40_writeCalibration

• Retrieve floating-point calibration value(s) from non-volatile memory:
pipx40_readCalibrationFP

• Store floating-point calibration value(s) in non-volatile memory:
pipx40_writeCalibrationFP

• Retrieve a sub-unit's calibration date from non-volatile memory:
pipx40_readCalibrationDate

• Store a sub-unit's calibration date in non-volatile memory:
pipx40_writeCalibrationDate

• Set a calibration point: pipx40_setCalibrationPoint

Pickering Interfaces PXI VISA Driver - pipx40

124

pipx40_readCalibration

VB Function pipx40_readCalibration (ByVal vi As Long, ByVal
subUnit As Long, ByVal idx As Long, ByRef data As
Long) As Long

C++ ViStatus pipx40_readCalibration (ViSession vi, ViUInt32
subUnit, ViUInt32 idx, ViPUInt32 data);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

idx in Index of the calibration value to be affected -
see below

data out Pointer/reference to variable to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads an integer calibration value from on-card non-volatile (EEPROM) memory.

Remarks

This function is usable only with sub-units that support integer calibration data.

In simple programmable resistor models such as:

40-280

40-281

40-282

Pickering Interfaces PXI VISA Driver - pipx40

125

40-290

40-291

40-295

40-296

50-295

the pipx40 driver places no interpretation on the stored value - an application
program can utilise it in any way it wishes.

In some other models, including:

41-735-001

41-752-001

stored values are utilised by specific pipx40 driver functions, and they should only
be overwritten by an appropriate calibration utility.

For programmable resistors supporting this function the valid range of idx values
corresponds to the number of bits, i.e. to the range of valid output channel
numbers. A 16-bit resistor sub-unit typically provides 16 x 16-bit values.

The storage capacity of other types supporting this feature is determined by their
functionality.

Pickering Interfaces PXI VISA Driver - pipx40

126

pipx40_readCalibrationDate

VB Function pipx40_readCalibrationDate (ByVal vi As Long, ByVal
subUnit As Long, ByVal store As Long, ByRef year As
Long, ByRef day As Long, ByRef interval As Long) As
Long

C++ ViStatus pipx40_readCalibrationDate (ViSession vi, ViUInt32
subUnit, ViUInt32 store, ViPUInt32 year, ViPUInt32
day, ViPUInt32 interval);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

store in Numeric variable indicating which store to access
(see below)

year out Pointer/reference to variable to receive the year of
calibration

day out Pointer/reference to variable to receive the day in
the year of calibration

interval out Pointer/reference to variable to receive calibration
interval (in days)

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads a sub-unit's calibration date and interval from on-card non-volatile
(EEPROM) memory.

Remarks

This function is only applicable to sub-units that support floating-point calibration
data; it can be used to discover when the sub-unit was last calibrated, and when
recalibration will become due. Bit pipx40_STAT_CALIBRATION_DUE in the result

Pickering Interfaces PXI VISA Driver - pipx40

127

of pipx40_getCardStatus or pipx40_getSubStatus indicates the need for
recalibration.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of
"store"
parameter

Ident Function

0 pipx40_CAL_STORE_USER Access user
calibration store

1 pipx40_CAL_STORE_FACTORY
Access factory
calibration store

Pickering Interfaces PXI VISA Driver - pipx40

128

pipx40_readCalibrationFP

VB Function pipx40_readCalibrationFP (ByVal vi As Long, ByVal
subUnit As Long, ByVal store As Long, ByVal offset As
Long, ByVal numValues As Long, ByRef data As Double)
As Long

C++ ViStatus pipx40_readCalibrationFP (ViSession vi, ViUInt32
subUnit, ViUInt32 store, ViUInt32 offset, ViUInt32
numValues, ViAReal64 data);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

store in Numeric variable indicating which store to access
(see below)

offset in Offset in the calibration store of the first value to
be read

numValues in The number of calibration values to read

data out Pointer/reference to array to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads one or more floating-point calibration values from on-card non-volatile
(EEPROM) memory.

Remarks

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
pipx40_resSetResistance. The number of values stored and their purpose is
specific to the target sub-unit.

Pickering Interfaces PXI VISA Driver - pipx40

129

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of
"store"
parameter

Ident Function

0 pipx40_CAL_STORE_USER Access user
calibration store

1 pipx40_CAL_STORE_FACTORY
Access factory
calibration store

Pickering Interfaces PXI VISA Driver - pipx40

130

pipx40_setCalibrationPoint

VB Function pipx40_setCalibrationPoint (ByVal vi As Long, ByVal
subUnit As Long, ByVal idx As Long) As Long

C++ ViStatus pipx40_setCalibrationPoint (ViSession vi, ViUInt32
subUnit, ViUInt32 idx);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

idx in Numeric variable indicating the calibration point
(see below)

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets a sub-unit to a state corresponding to one of its defined calibration points.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
pipx40_resSetResistance. The number of calibration points supported is specific
to the target sub-unit.

The idx value used by this function corresponds directly to the offset in the sub-
unit's calibration store at which the value is to be stored and retrieved, using
pipx40_writeCalibrationFP and pipx40_readCalibrationFP.

WARNING

Selection of a calibration point causes the sub-unit to change state; the resulting
state may be outside its normally desired range of operation. On completion of a
calibration sequence, pipx40_resSetResistance can be used to normalise the
setting.

Pickering Interfaces PXI VISA Driver - pipx40

131

Pickering Interfaces PXI VISA Driver - pipx40

132

pipx40_writeCalibration

VB Function pipx40_writeCalibration (ByVal vi As Long, ByVal
subUnit As Long, ByVal idx As Long, ByVal data As
Long) As Long

C++ ViStatus pipx40_writeCalibration (ViSession vi, ViUInt32
subUnit, ViUInt32 idx, ViUInt32 data);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

idx in Index of the calibration value to be affected -
see below

data in The calibration value to be written

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Writes an integer calibration value into on-card non-volatile (EEPROM) memory.

Remarks

This function is usable only with sub-units that support integer calibration data.

In simple programmable resistor models such as:

40-280

40-281

40-282

40-290

Pickering Interfaces PXI VISA Driver - pipx40

133

40-291

40-295

40-296

50-295

the pipx40 driver places no interpretation on the stored value - an application
program can utilise it in any way it wishes.

In some other models, including:

41-735-001

41-752-001

stored values are utilised by specific pipx40 driver functions, and they should only
be overwritten by an appropriate calibration utility.

The number of bits actually stored is specific to the target sub-unit - any
redundant high-order bits of the supplied data value are ignored.

For programmable resistors supporting this function the valid range of idx values
corresponds to the number of bits, i.e. to the range of valid output channel
numbers. A 16-bit resistor sub-unit typically provides 16 x 16-bit values.

The storage capacity of other types supporting this feature is determined by their
functionality.

Pickering Interfaces PXI VISA Driver - pipx40

134

pipx40_writeCalibrationDate

VB Function pipx40_writeCalibrationDate (ByVal vi As Long, ByVal
subUnit As Long, ByVal store As Long, ByVal interval
As Long) As Long

C++ ViStatus pipx40_writeCalibrationDate (ViSession vi, ViUInt32
subUnit, ViUInt32 store, ViUInt32 interval);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

store in Numeric variable indicating which store to access
(see below)

interval in The desired calibration interval (in days)

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Writes a sub-unit's calibration date and interval into on-card non-volatile
(EEPROM) memory. Date information is obtained from the current system date.

Remarks

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
pipx40_resSetResistance. The number of values stored and their purpose is
specific to the target sub-unit.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Pickering Interfaces PXI VISA Driver - pipx40

135

Value of
"store"
parameter

Ident Function

0 pipx40_CAL_STORE_USER Access user
calibration store

1 pipx40_CAL_STORE_FACTORY
Access factory
calibration store

Pickering Interfaces PXI VISA Driver - pipx40

136

pipx40_writeCalibrationFP

VB Function pipx40_writeCalibrationFP (ByVal vi As Long, ByVal
subUnit As Long, ByVal store As Long, ByVal offset As
Long, ByVal numValues As Long, ByRef data As Double)
As Long

C++ ViStatus pipx40_writeCalibrationFP (ViSession vi, ViUInt32
subUnit, ViUInt32 store, ViUInt32 offset, ViUInt32
numValues, ViAReal64 data);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

store in Numeric variable indicating which store to access
(see below)

offset in Offset in the calibration store of the first value to
be written

numValues in The number of calibration values to write

data out Pointer/reference to array containing the values to
write

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Writes one or more floating-point calibration values into on-card non-volatile
(EEPROM) memory.

Remarks

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
pipx40_resSetResistance. The number of values stored and their purpose is
specific to the target sub-unit.

Pickering Interfaces PXI VISA Driver - pipx40

137

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of
"store"
parameter

Ident Function

0 pipx40_CAL_STORE_USER Access user
calibration store

1 pipx40_CAL_STORE_FACTORY
Access factory
calibration store

WARNING

Writing new values will affect the sub-unit's calibration.

Pickering Interfaces PXI VISA Driver - pipx40

138

Programmable Resistor

Programmable Resistor

This section details the use of functions specific to programmable resistor sub-
units.

Detailed information about a programmable resistor sub-unit, if available, can be
obtained using function pipx40_resGetInfo.

Precision models

Precision programmable resistor models such as 40-260-001 are supported by
functions:

• pipx40_resGetResistance
• pipx40_resSetResistance

which allow chosen resistance values to be set.

Simple models

In models not supported by the above functions general purpose output functions
such as pipx40_setChannelPattern must be used to program resistance values by
setting bit-patterns explicitly.

Models 40-280, 40-281 and 40-282 are configured as simple resistor/switch
arrays and programming should be straightforward.

In models employing a series resistor chain - such as 40-290, 40-291, 40-292
and 40-295 - each of a card's programmable resistors is implemented as a
separate logical sub-unit and is constructed from a series chain of individual fixed
resistor elements, each element having an associated shorting switch. In the
cleared state all switches are open, giving the programmable resistor its
maximum value. A nominal value of zero ohms is obtained by turning all switches
ON; other values by turning on an appropriate pattern of switches.

In standard models the individual fixed resistors are arranged in a binary
sequence, the least significant bit of the least significant element in the array
passed to pipx40_setChannelPattern corresponding to the lowest value resistor
element. For example, in a standard 16-bit resistor of 32768 ohms:

Data[0] bit 0 (value 0x0001) corresponds to the 0R5 resistor element

Pickering Interfaces PXI VISA Driver - pipx40

139

Data[0] bit 1 (value 0x0002) corresponds to the 1R0 resistor element

thru...

Data[0] bit 15 (value 0x8000) corresponds to the 16384R resistor element

Setting a nominal value of 68 ohms (= 64 + 4 ohms) therefore requires Data[0]
set to 0xFF77 (the inverse of the binary pattern 0000 0000 1000 1000).

Special models may have some other arrangement, and may also include a fixed
offset resistor that is permanently in circuit.

Non-volatile (EEPROM) storage of calibration values is supported through the
functions pipx40_readCalibration and pipx40_writeCalibration.

See the application note on Simple Programmable Resistor Cards.

Summary of functions for normal operation of "Programmable Resistor"
cards

Model(s) Class Functions
pipx40_resSetResistance
pipx40_resGetResistance

40-260-001 Precision

pipx40_readCalibrationDate
pipx40_setChannelPattern 40-260-999 Precision
pipx40_getChannelPattern
pipx40_resSetResistance
pipx40_resGetResistance

40-261 Precision

pipx40_readCalibrationDate
pipx40_resSetResistance
pipx40_resGetResistance

40-262 Precision

pipx40_readCalibrationDate
pipx40_resSetResistance
pipx40_resGetResistance

40-265 Precision

pipx40_readCalibrationDate
pipx40_setChannelState
pipx40_getChannelState
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_readCalibration

40-280, 40-
281, 40-282

Simple

pipx40_writeCalibration
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_readCalibration

40-290, 40-
291, 40-292

Simple

pipx40_writeCalibration
pipx40_setChannelPattern 40-295 Simple
pipx40_getChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

140

pipx40_readCalibration
pipx40_writeCalibration
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_readCalibration

40-296 Simple

pipx40_writeCalibration
pipx40_resSetResistance
pipx40_resGetResistance

40-297 Precision

pipx40_readCalibrationDate
pipx40_setChannelPattern
pipx40_getChannelPattern
pipx40_readCalibration

50-295 Simple

pipx40_writeCalibration
pipx40_resSetResistance
pipx40_resGetResistance

50-297 Precision

pipx40_readCalibrationDate
...

Pickering Interfaces PXI VISA Driver - pipx40

141

pipx40_resGetInfo

VB Function pipx40_resGetInfo (ByVal vi As Long, ByVal subUnit As
Long, ByRef MinRes As Double, ByRef MaxRes As Double,
ByRef refRes As Double, ByRef precPC As Double, ByRef
precDelta As Double, ByRef int1 As Double, ByRef
intDelta As Double, ByRef capabilities As Long) As
Long

C++ ViStatus pipx40_resGetInfo (ViSession vi, ViUInt32 subUnit,
ViPReal64 minRes, ViPReal64 maxRes, ViPReal64 refRes,
ViPReal64 precPC, ViPReal64 precDelta, ViPReal64 int1,
ViPReal64 intDelta, ViPUInt32 capabilities);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

minRes out pointer to variable to receive minimum resistance
setting

maxRes out pointer to variable to receive maximum resistance
setting

refRes out pointer to variable to receive reference
resistance value

precPC out pointer to variable to receive percentage
precision (+/- percent)

precDelta out pointer to variable to receive delta precision
(+/- ohms)

int1 out pointer to (currently unused) variable

intDelta out pointer to variable to receive internal precision
(+/- ohms)

capabilities out pointer to variable to receive capabilities flags

Return Value

Pickering Interfaces PXI VISA Driver - pipx40

142

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains detailed information about a programmable resistor sub-unit.

Capabilities flag bit indications are:

Driver constant Bit value -
hexadecimal

Description

pipx40_RES_CAP_REF 00000008 Supports reference calibration
value

pipx40_RES_CAP_INF 00000004 Supports infinity setting

pipx40_RES_CAP_ZERO 00000002 Supports "zero ohms" setting

pipx40_RES_CAP_PREC 00000001 Precision resistor - supporting
function pipx40_resSetResistance
etc.

pipx40_RES_CAP_NONE 00000000 No special capablities

Remarks

minRes and maxRes are the minimum and maximum values that can be set in
the sub-unit's continuous range of adjustment. If capability
pipx40_RES_CAP_ZERO is flagged a setting of "zero ohms" is also possible. If
pipx40_RES_CAP_INF is flagged an open-circuit setting is also possible.

If capability pipx40_RES_CAP_REF is flagged, refRes is the reference resistance
value - such as in model 40-265, where it gives the balanced state resistance.

precPC and precDelta represent the sub-unit's precision specification, such as
(±0.2%, ±0.1 ohms).

Pickering Interfaces PXI VISA Driver - pipx40

143

intDelta is the notional precision to which the sub-unit works internally; this value
will be less than or equal to the figure indicated by PrecPC and PrecDelta,
indicating greater internal precision.

Where information is not available for the sub-unit concerned, null values are
returned.

Pickering Interfaces PXI VISA Driver - pipx40

144

pipx40_resGetResistance

VB Function pipx40_resGetResistance (ByVal vi As Long, ByVal
subUnit As Long, ByRef resistance As Double) As Long

C++ ViStatus pipx40_resGetResistance (ViSession vi, ViUInt32
subUnit, ViPReal64 resistance);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

resistance in The current resistance setting, in ohms

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the current resistance setting of the specified programmable resistor.
This function is only usable with programmable resistor models that support it;
such capability is indicated in the result of pipx40_resGetInfo.

Remarks

The value obtained for a resistance setting of infinity, if the sub-unit permits this,
is HUGE_VAL (in C language, #include <math.h>).

Pickering Interfaces PXI VISA Driver - pipx40

145

pipx40_resSetResistance

VB Function pipx40_resSetResistance (ByVal vi As Long, ByVal
subUnit As Long, ByVal mode As Long, ByVal resistance
As Double) As Long

C++ ViStatus pipx40_resSetResistance (ViSession vi, ViUInt32
subUnit, ViUInt32 mode, ViReal64 resistance);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

mode in The resistance setting mode (see below)

resistance in The resistance value, in ohms

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets a programmable resistor to the closest available setting to the value
specified. This function is only usable with programmable resistor models that
support it: such capability is indicated in the result of pipx40_resGetInfo.

mode Value

A value indicating how the given resistance value is to be applied. Only one mode
is currently supported:

Value Ident Function

0 pipx40_RES_MODE_SET Set resistance to the specifed
value

Remarks

Pickering Interfaces PXI VISA Driver - pipx40

146

If the sub-unit permits, the resistance value can be set to:

• zero ohms (nominally), by passing the resistance value 0.0
• infinity, by passing the resistance value HUGE_VAL (in C language,

#include <math.h>); or alternatively by using function pipx40_clearSub

The resistance value actually set can be found using pipx40_resGetResistance.

In programmable resistor models having gapped ranges, resistance values falling
within such gaps are not coerced. For example, in a unit supporting settings:

• zero ohms
• 100 - 200 ohms continuously variable
• infinity

attempting to set values above zero but below 100 ohms, or above 200 ohms but
less than infinity, gives error pipx40_ERROR_BAD_RESISTANCE.

Pickering Interfaces PXI VISA Driver - pipx40

147

Programmable Potentiometer

Programmable Potentiometer

This section details the use of functions specific to programmable potentiometer
sub-units.

No potentiometer-specific functions are currently provided.

A potentiometer such as model 40-296 is represented logically as a
programmable resistor (RES type) having twice the number of switched bits as its
nominal resolution, i.e. a 24-bit potentiometer returns the type description
RES(48). To make the unit behave correctly appropriate bit-patterns must be set
in the upper and lower halves using general purpose output function
pipx40_setChannelPattern. Transient effects must be expected when changing
the wiper position; provided pipx40_MODE_NO_WAIT is not in force resistance
values can only be transiently high.

Note that a potentiometer's state at power-up and when cleared is as a device of
twice the nominal resistance with its wiper centred.

WARNING

Mis-programming can result in the potentiometer presenting a lower than normal
resistance between its end terminals - in the worst case zero ohms.

Non-volatile (EEPROM) storage of calibration values is supported through the
functions pipx40_readCalibration and pipx40_writeCalibration.

Pickering Interfaces PXI VISA Driver - pipx40

148

Programmable RF Attenuator

Programmable RF Attenuator

This section details the use of functions specific to programmable RF attenuator
sub-units.

Specific functions are provided to:

• Obtain attenuator information, in numeric format: pipx40_attenGetInfo
• Obtain attenuator description, in string format: pipx40_attenGetType
• Set an attenuation level, in dB: pipx40_attenSetAttenuation
• Obtain the current attenuation setting, in dB: pipx40_attenGetAttenuation
• Obtain the value of each individual attenuator pad, in dB:

pipx40_attenGetPadValue

Pickering Interfaces PXI VISA Driver - pipx40

149

pipx40_attenGetAttenuation

VB Function pipx40_attenGetAttenuation (ByVal vi As Long, ByVal
subUnit As Long, ByRef atten As Single) As Long

C++ ViStatus pipx40_attenGetAttenuation (ViSession vi, ViUInt32
subUnit, ViPReal32 atten);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

atten out The sub-unit's attenuation setting, in dB

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains an attenuator sub-unit's current attenuation setting.

Pickering Interfaces PXI VISA Driver - pipx40

150

pipx40_attenGetInfo

VB Function pipx40_attenGetInfo (ByVal vi As Long, ByVal subUnit
As Long, ByRef typeNum As Long, ByRef numSteps As
Long, ByRef stepSize As Single) As Long

C++ ViStatus pipx40_attenGetInfo (ViSession vi, ViUInt32 subUnit,
ViPUInt32 typeNum, ViPUInt32 numSteps, ViPReal32
stepSize);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

typeNum out pointer to variable to receive type code

numSteps out pointer to variable to receive step count

stepSize out pointer to variable to receive step size, in dB

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a type description of an attenuator sub-unit, as numeric values.

Attenuator sub-unit type codes are:

Driver constant typeNum
value

Description

pipx40_TYPE_ATTEN 8 Programmable RF
attenuator

Remarks

Pickering Interfaces PXI VISA Driver - pipx40

151

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads in the attenuator can be obtained using
pipx40_getSubInfo.

Pickering Interfaces PXI VISA Driver - pipx40

152

pipx40_attenGetPadValue

VB Function pipx40_attenGetPadValue (ByVal vi As Long, ByVal
subUnit As Long, ByVal padNum As Long, ByRef atten As
Single) As Long

C++ ViStatus pipx40_attenGetPadValue (ViSession vi, ViUInt32
subUnit, ViUInt32 padNum, ViPReal32 atten);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

padNum in The number of the pad whose value is to be queried

atten out Pointer to variable to receive the pad's attenuation
value, in dB

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the attenuation value associated with an individual pad of an attenuator
sub-unit.

Remarks

This function facilitates explicit pad selection using pipx40_setChannelState or
pipx40_setChannelPattern, if the selections made by pipx40_attenSetAttenuation
are not optimal for the application.

The number of pads in the sub-unit can be found using pipx40_getSubInfo.

Pickering Interfaces PXI VISA Driver - pipx40

153

pipx40_attenGetType

VB Function pipx40_attenGetType (ByVal vi As Long, ByVal subUnit
As Long, ByVal subType As String) As Long

C++ ViStatus pipx40_attenGetType (ViSession vi, ViUInt32 subUnit,
ViString subType);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

subType out Character string to receive the result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a type description of an attenuator sub-unit, as a text string.

subType string Description

ATTEN(<number of steps>,<step
size in dB>)

Programmable RF
attenuator

Remarks

A more secure version of this function exists as pipx40_attenGetType_s.

The length of the result string will not exceed the value of driver constant
pipx40_MAX_ATTEN_TYPE_STR.

Pickering Interfaces PXI VISA Driver - pipx40

154

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads in the attenuator can be obtained using
pipx40_getSubType.

Visual Basic Note

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(subType, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

155

pipx40_attenSetAttenuation

VB Function pipx40_attenSetAttenuation (ByVal vi As Long, ByVal
subUnit As Long, ByVal atten As Single) As Long

C++ ViStatus pipx40_attenSetAttenuation (ViSession vi, ViUInt32
subUnit, ViReal32 atten);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

atten in The attenuation value to set, in dB

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets an attenuator sub-unit's attenuation level.

Remarks

The combination of pads inserted to achieve the desired attenuation level is
determined by the driver for best all-round performance. In some models it may
be possible to optimise particular aspects of attenuator performance by setting
other pad combinations explicitly using pipx40_setChannelState or
pipx40_setChannelPattern. The pad value associated with each output channel
can be discovered with pipx40_attenGetPadValue.

Pickering Interfaces PXI VISA Driver - pipx40

156

Power Supplies

Power Supplies

This section details the use of functions specific to power supply sub-units.

Specific functions are provided to:

• Obtain power supply description, in string format: pipx40_psuGetType
• Obtain power supply information, in numeric format: pipx40_psuGetInfo
• Set power supply output voltage: pipx40_psuSetVoltage
• Obtain a power supply's output voltage setting: pipx40_psuGetVoltage
• Enable/disable a power supply's output: pipx40_psuEnable

Other functions that are relevant to operation of power supply sub-units include:

• Clear a power supply (restore start-up state): pipx40_clearSub
• Obtain power supply status information: pipx40_getSubStatus
• Retrieve a calibration value from non-volatile memory (some models):

pipx40_readCalibration
• Store a calibration value in non-volatile memory (some models):

pipx40_writeCalibration

Pickering Interfaces PXI VISA Driver - pipx40

157

pipx40_psuEnable

VB Function pipx40_psuEnable (ByVal vi As Long, ByVal subUnit As
Long, ByVal state As Boolean) As Long

C++ ViStatus pipx40_psuEnable (ViSession vi, ViUInt32 subUnit,
ViBoolean state);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

state in A Boolean indicating type of action, VI_ON to
enable, VI_OFF to disable

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Enables or disables the output of a power supply sub-unit.

Pickering Interfaces PXI VISA Driver - pipx40

158

pipx40_psuGetInfo

VB Function pipx40_psuGetInfo (ByVal vi As Long, ByVal subUnit As
Long, ByRef typeNum As Long, ByRef voltage As Double,
ByRef current As Double, ByRef precision As Long,
ByRef capabilities As Long) As Long

C++ ViStatus pipx40_psuGetInfo (ViSession vi, ViUInt32 subUnit,
ViPUInt32 typeNum, ViPReal64 voltage, ViPReal64
current, ViPUInt32 precision, ViPUInt32 capabilities);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

typeNum out pointer to variable to receive type code

voltage out pointer to variable to receive voltage rating

current out pointer to variable to receive current rating

precision out pointer to variable to receive precision (the
number of bits resolution - for programmable
supplies only)

capabilities out pointer to variable to receive capability flags -
see below

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a type description of a power supply sub-unit, as numeric values.

Power supply sub-unit type codes are:

Pickering Interfaces PXI VISA Driver - pipx40

159

Driver constant typeNum
value

Description

pipx40_TYPE_PSUDC 9 Power
supply, DC

The capabilities value is the sum of a number of individual bit-flags, as follows:

Driver constant Bit value -
hexadecimal

Description

pipx40_PSU_CAP_CURRENT_MODE_SENSE 00000010 Can sense if
operating in current-
limited mode

pipx40_PSU_CAP_PROG_CURRENT 00000008 Output current is
programmable

pipx40_PSU_CAP_PROG_VOLTAGE 00000004 Output voltage is
programmable

pipx40_PSU_CAP_OUTPUT_SENSE 00000002 Has logic-level
sensing of output
active state

pipx40_PSU_CAP_OUTPUT_CONTROL 00000001 Has output on/off
control

Certain driver functions are only usable with power supply sub-units having
appropriate capabilities - examples being:

pipx40_psuEnable

pipx40_psuSetVoltage

Pickering Interfaces PXI VISA Driver - pipx40

160

pipx40_psuGetType

VB Function pipx40_psuGetType (ByVal vi As Long, ByVal subUnit As
Long, ByVal subType As String) As Long

C++ ViStatus pipx40_psuGetType (ViSession vi, ViUInt32 subUnit,
ViString subType);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

subType out Character string to receive the result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a type description of a power supply sub-unit, as a text string.

subType string Description

PSUDC(<voltage rating>,<current
rating>)

Power supply,
DC

Remarks

A more secure version of this function exists as pipx40_psuGetType_s.

The length of the result string will not exceed the value of driver constant
pipx40_MAX_PSU_TYPE_STR.

Visual Basic Note

Pickering Interfaces PXI VISA Driver - pipx40

161

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(subType, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

162

pipx40_psuGetVoltage

VB Function pipx40_psuGetVoltage (ByVal vi As Long, ByVal subUnit
As Long, ByRef voltage As Double) As Long

C++ ViStatus pipx40_psuGetVoltage (ViSession vi, ViUInt32 subUnit,
ViPReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

voltage out The sub-unit's output voltage setting

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a power supply sub-unit's current output voltage setting.

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which may be affected by device tolerances,
current-limit conditions etc.).

This function is also usable with fixed-voltage supplies, returning the nominal
output voltage.

Pickering Interfaces PXI VISA Driver - pipx40

163

pipx40_psuSetVoltage

VB Function pipx40_psuSetVoltage (ByVal vi As Long, ByVal subUnit
As Long, ByVal voltage As Double) As Long

C++ ViStatus pipx40_psuSetVoltage (ViSession vi, ViUInt32 subUnit,
ViReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

voltage in The output voltage value to set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets a power supply sub-unit's output voltage.

The voltage value specified is rounded to the precision of the supply's DAC. The
actual voltage setting can be obtained using pipx40_psuGetVoltage.

This function is usable only with sub-units having the capability
pipx40_PSU_CAP_PROG_VOLTAGE - see pipx40_psuGetInfo.

Pickering Interfaces PXI VISA Driver - pipx40

164

Battery Simulator

Battery Simulator

This section details the use of functions specific to battery simulator models.

Models 41-750-001 and 41-751-001

No special-purpose functions are implemented for these models - they are
operable using general-purpose input-output functions. See:

40-750-001

40-751-001

Model 41-752-001

Model 41-752-001 is implemented as an array of BATT sub-units, employing the
following special-purpose functions for normal operation:

• Set output voltage: pipx40_battSetVoltage
• Obtain the present output voltage setting: pipx40_battGetVoltage
• Set sink current: pipx40_battSetCurrent
• Obtain the present sink current setting: pipx40_battGetCurrent
• Set output enable states: pipx40_battSetEnable
• Obtain present output enable states: pipx40_battGetEnable
• Obtain the present state of the hardware interlock:

pipx40_battReadInterlockState

Pickering Interfaces PXI VISA Driver - pipx40

165

pipx40_battSetVoltage

VB Function pipx40_battSetVoltage (ByVal vi As Long, ByVal subUnit
As Long, ByVal voltage As Double) As Long

C++ ViStatus pipx40_battSetVoltage (ViSession vi, ViUInt32 subUnit,
ViReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

voltage in The output voltage value to set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets battery simulator output voltage.

When subUnit corresponds to a BATT sub-unit, the function sets the voltage of
that sub-unit alone.

If subUnit = 0 (pipx40_BATT_ALL_BATT_SUB_UNITS), all of the card's BATT sub-
units are set to the given voltage.

The voltage value specified is rounded to the precision of the sub-unit's DAC. The
actual voltage setting can be obtained using pipx40_battGetVoltage.

Pickering Interfaces PXI VISA Driver - pipx40

166

pipx40_battGetVoltage

VB Function pipx40_battGetVoltage (ByVal vi As Long, ByVal subUnit
As Long, ByRef voltage As Double) As Long

C++ ViStatus pipx40_battGetVoltage (ViSession vi, ViUInt32 subUnit,
ViPReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

voltage out The sub-unit's output voltage setting

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a battery simulator (BATT type) sub-unit's output voltage setting, as set
by pipx40_battSetVoltage.

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which could be affected by conditions such as
current-limiting).

Pickering Interfaces PXI VISA Driver - pipx40

167

pipx40_battSetCurrent

VB Function pipx40_battSetCurrent (ByVal vi As Long, ByVal subUnit
As Long, ByVal current As Double) As Long

C++ ViStatus pipx40_battSetCurrent (ViSession vi, ViUInt32 subUnit,
ViReal64 current);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

current in The output sink current value to set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets battery simulator output sink current.

When subUnit corresponds to a BATT sub-unit, the function sets the sink current
of that sub-unit alone.

If subUnit = 0 (pipx40_BATT_ALL_BATT_SUB_UNITS), all of the card's BATT sub-
units are set to the given current.

For non-zero values, output sink current is set to the nearest available value
greater than that specified, typically using a low-precision DAC (e.g. 4-bit). The
actual sink current setting can be obtained using pipx40_battGetCurrent.

Pickering Interfaces PXI VISA Driver - pipx40

168

pipx40_battGetCurrent

VB Function pipx40_battGetCurrent (ByVal vi As Long, ByVal subUnit
As Long, ByRef current As Double) As Long

C++ ViStatus pipx40_battGetCurrent (ViSession vi, ViUInt32 subUnit,
ViPReal64 current);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

current out The sub-unit's output sink current setting

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains a battery simulator (BATT type) sub-unit's output sink current setting, as
set by pipx40_battSetCurrent.

Pickering Interfaces PXI VISA Driver - pipx40

169

pipx40_battSetEnable

VB Function pipx40_battSetEnable (ByVal vi As Long, ByVal subUnit
As Long, ByVal pattern As Long) As Long

C++ ViStatus pipx40_battSetEnable (ViSession vi, ViUInt32 subUnit,
ViUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

pattern in The output enable pattern to set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Enables/disables battery simulator outputs.

When subUnit corresponds to a BATT sub-unit, the function sets the output
enable state of that sub-unit alone according to the least significant bit of Pattern
(0 = OFF, 1 = ON).

If subUnit = 0 (pipx40_BATT_ALL_BATT_SUB_UNITS), enable states of all the
card's BATT sub-units are set; bits in the supplied pattern are utilised in
ascending order of BATT sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered BATT sub-unit (0 = OFF, 1 =
ON)

Pattern bit 1 = enable state of next numbered BATT sub-unit (0 = OFF, 1 =
ON)

etc.

Pickering Interfaces PXI VISA Driver - pipx40

170

Note that the operation can fail (returning pipx40_ERROR_EXECUTION_FAIL) if a
necessary hardware interlock is disconnected.

The present enable pattern can be obtained using pipx40_battGetEnable.

Pickering Interfaces PXI VISA Driver - pipx40

171

pipx40_battGetEnable

VB Function pipx40_battGetEnable (ByVal vi As Long, ByVal subUnit
As Long, ByRef pattern As Long) As Long

C++ ViStatus pipx40_battGetEnable (ViSession vi, ViUInt32 subUnit,
ViPUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

pattern out The sub-unit (or card's) output enable pattern

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the enabled/disabled status of battery simulator sub-units, as set by
pipx40_battSetEnable.

When subUnit corresponds to a BATT sub-unit, the function gets the output
enable state of that sub-unit alone in the least significant bit of pattern (0 = OFF,
1 = ON).

If subUnit = 0 (pipx40_BATT_ALL_BATT_SUB_UNITS), enable states of all the
card's BATT sub-units are obtained; bits in the pattern are assigned in ascending
order of BATT sub-unit, i.e.

pattern bit 0 = enable state of lowest numbered BATT sub-unit (0 = OFF, 1 =
ON)

pattern bit 1 = enable state of next numbered BATT sub-unit (0 = OFF, 1 =
ON)

etc.

Pickering Interfaces PXI VISA Driver - pipx40

172

Pickering Interfaces PXI VISA Driver - pipx40

173

pipx40_battReadInterlockState

VB Function pipx40_battReadInterlockState (ByVal vi As Long, ByVal
subUnit As Long, ByRef interlock As Boolean) As Long

C++ ViStatus pipx40_battReadInterlockState (ViSession vi, ViUInt32
subUnit, ViPBoolean interlock);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

interlock out Pointer/reference to variable to receive result

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Reads battery simulator hardware interlock state.

When SubNum corresponds to a BATT sub-unit, the function gets the state of the
hardware interlock associated with that sub-unit:

0 = VI_OFF = interlock is "down"

1 = VI_ON = interlock is "up"

If SubNum = 0 (pipx40_BATT_ALL_BATT_SUB_UNITS), the function gets the
summary state of all BATT sub-unit interlocks:

0 = VI_OFF = one or more interlocks is "down"

1 = VI_ON = all interlocks are "up"

Pickering Interfaces PXI VISA Driver - pipx40

174

Model 41-752-001 has a single global interlock affecting all channels, and both
modes above yield the same result.

Interlock "up" state is hardware-latched from the physical wired interlock by the
action of pipx40_battSetEnable, when that function succeeds. Hence:

• If the "up" state is indicated, the physical interlock has remained intact
and outputs are enabled as previously set by pipx40_battSetEnable.

• If the "down" state is indicated, the physical interlock has been broken
and all outputs will have been disabled automatically through hardware.

Pickering Interfaces PXI VISA Driver - pipx40

175

Thermocouple Simulator

Thermocouple Simulator

This section details the use of functions specific to thermocouple simulator
models.

Thermocouple simulators are implemented as an array of VSOURCE sub-units,
employing the following special-purpose functions for normal operation:

• Set output voltage range: pipx40_vsourceSetRange
• Obtain the present output range selection: pipx40_vsourceGetRange
• Set output voltage: pipx40_vsourceSetVoltage
• Obtain the present output voltage setting: pipx40_vsourceGetVoltage
• Set output enable states: pipx40_vsourceSetEnable
• Obtain present output enable states: pipx40_vsourceGetEnable

The following standard functions are used to operate the monitoring multiplexer:

• Disconnect all channels: pipx40_clearSub
• Connect/disconnect a channel: pipx40_setChannelState
• Obtain the present channel selection: pipx40_getChannelPattern

Pickering Interfaces PXI VISA Driver - pipx40

176

pipx40_vsourceSetRange

VB Function pipx40_vsourceSetRange (ByVal vi As Long, ByVal
subUnit As Long, ByVal voltage As Double) As Long

C++ ViStatus pipx40_vsourceSetRange (ViSession vi, ViUInt32
subUnit, ViReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

voltage in The output voltage range to set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Selects the output voltage range of voltage source (VSOURCE type) sub-units
that have this capability.

Only positive range values are currently accepted, irrespective of whether the
sub-unit has positive voltage, negative voltage, or bipolar capability.

For a valid range selection the supplied range value must be acceptably close to a
range supported by the sub-unit.

The present range selection can be obtained using pipx40_vsourceGetRange.

Pickering Interfaces PXI VISA Driver - pipx40

177

pipx40_vsourceGetRange

VB Function pipx40_vsourceGetRange (ByVal vi As Long, ByVal
subUnit As Long, ByRef voltage As Double) As Long

C++ ViStatus pipx40_vsourceGetRange (ViSession vi, ViUInt32
subUnit, ViPReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

voltage out The sub-unit's output range setting

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the range setting of a voltage source (VSOURCE type) sub-unit, as set by
pipx40_vsourceSetRange.

Pickering Interfaces PXI VISA Driver - pipx40

178

pipx40_vsourceSetVoltage

VB Function pipx40_vsourceSetVoltage (ByVal vi As Long, ByVal
subUnit As Long, ByVal voltage As Double) As Long

C++ ViStatus pipx40_vsourceSetVoltage (ViSession vi, ViUInt32
subUnit, ViReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

voltage in The output voltage value to set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets the output voltage of voltage source (VSOURCE type) sub-units.

The voltage value specified is rounded to the precision of the sub-unit's DAC. The
actual voltage setting can be obtained using pipx40_vsourceGetVoltage.

Pickering Interfaces PXI VISA Driver - pipx40

179

pipx40_vsourceGetVoltage

VB Function pipx40_vsourceGetVoltage (ByVal vi As Long, ByVal
subUnit As Long, ByRef voltage As Double) As Long

C++ ViStatus pipx40_vsourceGetVoltage (ViSession vi, ViUInt32
subUnit, ViPReal64 voltage);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

voltage out The sub-unit's output voltage setting

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the output setting of a voltage source (VSOURCE type) sub-unit, as set
by pipx40_vsourceSetVoltage.

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which could be affected by conditions such as
current-limiting).

Pickering Interfaces PXI VISA Driver - pipx40

180

pipx40_vsourceSetEnable

VB Function pipx40_vsourceSetEnable (ByVal vi As Long, ByVal
subUnit As Long, ByVal pattern As Long) As Long

C++ ViStatus pipx40_vsourceSetEnable (ViSession vi, ViUInt32
subUnit, ViUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit
actions will take place

pattern in The output enable pattern to set

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Sets the output enable pattern of voltage source (VSOURCE type) sub-units.

When SubNum corresponds to a VSOURCE sub-unit, the function sets the output
enable state of that sub-unit alone according to the least significant bit of pattern
(0 = OFF, 1 = ON).

If SubNum = 0 (VSOURCE_ALL_VSOURCE_SUB_UNITS), enable states of all the
card's VSOURCE sub-units are set; bits in the supplied Pattern are utilised in
ascending order of VSOURCE sub-unit, i.e.

pattern bit 0 = enable state of lowest numbered VSOURCE sub-unit (0 = OFF,
1 = ON)

pattern bit 1 = enable state of next numbered VSOURCE sub-unit (0 = OFF, 1
= ON)

etc.

Pickering Interfaces PXI VISA Driver - pipx40

181

The present enable pattern can be obtained using pipx40_vsourceGetEnable.

Pickering Interfaces PXI VISA Driver - pipx40

182

pipx40_vsourceGetEnable

VB Function pipx40_vsourceGetEnable (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long) As Long

C++ ViStatus pipx40_vsourceGetEnable (ViSession vi, ViUInt32
subUnit, ViPUInt32 pattern);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

pattern out The sub-unit (or card's) output enable pattern

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Obtains the output enable pattern of voltage source (VSOURCE type) sub-units,
as set by pipx40_vsourceSetEnable.

When SubNum corresponds to a VSOURCE sub-unit, the function gets the output
enable state of that sub-unit alone in the least significant bit of pattern (0 = OFF,
1 = ON).

If SubNum = 0 (pipx40_VSOURCE_ALL_VSOURCE_SUB_UNITS), enable states of
all the card's VSOURCE sub-units are obtained; bits in Pattern are assigned in
ascending order of VSOURCE sub-unit, i.e.

pattern bit 0 = enable state of lowest numbered VSOURCE sub-unit (0 = OFF,
1 = ON)

pattern bit 1 = enable state of next numbered VSOURCE sub-unit (0 = OFF, 1
= ON)

etc.

Pickering Interfaces PXI VISA Driver - pipx40

183

Pickering Interfaces PXI VISA Driver - pipx40

184

Mode Control

Mode Control

This section details the use of functions controlling the driver's operation.

This feature is implemented through a single function: pipx40_setDriverMode.

Pickering Interfaces PXI VISA Driver - pipx40

185

pipx40_setDriverMode

VB Function pipx40_setDriverMode (ByVal newMode As Long, ByRef
previousMode As Long) As Long

C++ ViStatus pipx40_setDriverMode (ViUInt32 newMode, ViPUInt32
previousMode);

Parameter I/O Description

newMode in New value for driver mode flags

previousMode out The driver's mode flags prior to
executing this function.

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_error_message.

Description

Allows control flags affecting the driver's global behaviour to be set and read. This
function gives access to low-level control features of the pipx40 driver and is
intended for 'expert' use only - the default driver behaviour should be satisfactory
for the great majority of applications.

Remarks

Individual bits in the mode value control various aspects of driver operation.

Setting the value zero (pipx40_MODE_DEFAULT) clears all special driver modes.

Control bit values may be summed to enable multiple driver features.

Driver constant Bit value -
hexadecimal

Description

pipx40_MODE_NO_WAIT 00000001 Function calls return without
waiting for card operations to
complete

pipx40_MODE_UNLIMITED 00000002 Disable maximium closure limits

Pickering Interfaces PXI VISA Driver - pipx40

186

- see Warning below

pipx40_MODE_IGNORE_TEST 00000008 Enable card operation even if
selftest fails - see Warning
below

Warning - pipx40_MODE_UNLIMITED

Use of pipx40_MODE_UNLIMITED to disable the maximum number of crosspoint
closures permitted on high-density cards is not recommended, because it carries
the danger of overheating and consequent damage to both the card itself and the
system in which it is installed. See Closure Limits.

Warning - pipx40_MODE_IGNORE_TEST

The pipx40_MODE_IGNORE_TEST feature should be used with extreme caution.
If a defective card is forcibly enabled, under some fault conditions a large number
of outputs could be energised spuriously, resulting in overheating and consequent
damage to both the card itself and the system in which it is installed. The
intended purpose of this feature is to allow continued operation of a BRIC unit
from which a daughtercard has been removed for maintenance. See BRIC
Operation.

Pickering Interfaces PXI VISA Driver - pipx40

187

Utility Programs

Utility Programs

The pipx40 driver is supported by a number of utility programs:

• Test Panels
• Terminal Monitor
• Diagnostic Utility

Pickering Interfaces PXI VISA Driver - pipx40

188

Test Panels

The Test Panels application allows any combination of cards to be controlled using
a graphical interface.

Please note that the Test Panels access cards using the Pilpxi Direct I/O driver, so
their I/O operations are not visible to VISA-based utilities such as NI-Spy.

Pickering Interfaces PXI VISA Driver - pipx40

189

Terminal Monitor

PILMon is a simple terminal monitor program for Pickering PXI cards. Use the HE
command within PILMon to obtain help.

PILMon has a number of command-line options when starting the program. For
instructions, in a Command Prompt window with the current directory set to that
containing PILMon, type:

PILMON -?

C:\Pickering\Utils>pilmon -?

Program: PIL PXI Monitor

Syntax: PILMon [-cN] [-r] [-n]

Arguments: -cN specifies the number of the COM port (1 thru 9) to use

 in lieu of the console. COM settings are 9600/8/N/1.

 -r specifies that when run PILMon should attempt to open

 the cards without clearing them. This may or may not be

 possible.

 -n specifies that when run PILMon should NOT automatically

 open the cards. Overrides -r if both are used.

Options are accepted in any order.

Example: PILMon -c2 -r -n

Please note that PILMon accesses cards using the Pilpxi Direct I/O driver, so its
I/O operations are not visible to VISA-based utilities such as NI-Spy.

Although it does not employ the VISA driver, the action of many PILMon
commands corresponds closely to pipx40 card specific functions:

--Card Specific Functions-- Corresponding
PILMon command

Pickering Interfaces PXI VISA Driver - pipx40

190

Card ID, Properties & Status

Get card ID pipx40_getCardId See note

Get card status pipx40_getCardStatus ST

Get closure limit pipx40_getClosureLimit CL

Get diagnostic
information

pipx40_getDiagnostic DI

Get settling time pipx40_getSettlingTime SE

Get card sub-unit
counts

pipx40_getSubCounts See note

Get sub-unit
description (string
format)

pipx40_getSubType See note

Get sub-unit
description (numeric
format)

pipx40_getSubInfo See note

Output control

Clear all channels of
a card

pipx40_clearCard AR

Clear all channels of
a sub-unit

pipx40_clearSub CS

Turn on/off a single
channel

pipx40_setChannelState SC and SO

Turn on/off of a
matrix crosspoint

pipx40_setCrosspointState XC and XO

Set a sub-unit's
channel pattern

pipx40_setChannelPattern SB

Get the state of a
single channel

pipx40_getChannelState SV

Get the state of a
matrix crosspoint

pipx40_getCrosspointState XV

Get a sub-unit's
channel pattern

pipx40_getChannelPattern BV

Output masking

Clear a sub-unit's
mask

pipx40_clearMask CM

Mask/unmask a single
channel

pipx40_setMaskState SM

Mask/unmask a matrix
crosspoint

pipx40_setCrosspointMask XM

Set a sub-unit's mask
pattern

pipx40_setMaskPattern MB

Get the mask state of
a single channel

pipx40_getMaskState MS

Get the mask state of
a matrix crosspoint

pipx40_getCrosspointMask XS

Get a sub-unit's mask pipx40_getMaskPattern MV

Pickering Interfaces PXI VISA Driver - pipx40

191

pattern

Output calibration (integer type)

Read a channel's
calibration value

pipx40_readCalibration RC

Write a channel's
calibration value

pipx40_writeCalibration WC

Input

Read the state of a
single input

pipx40_readInputState IS

Read a sub-unit's
input pattern

pipx40_readInputPattern BR

Mode control

Set driver operating
mode

pipx40_setDriverMode DM

Note

Where noted, the information obtained by this function is displayed as part of the
output from the PILMon LS command; though the Pilpxi card identification string
omits the "PICKERING INTERFACES," manufacturer identification that is returned
by pipx40_getCardId.

Pickering Interfaces PXI VISA Driver - pipx40

192

Diagnostic Utility

The Plug & Play functionality of PXI cards generally ensures trouble-free
installation. However in the event of any problems, it may be helpful to know how
cards have been configured in the system. The PipxDiag Windows diagnostic
utility generates an extensive report showing the allocations of PCI/PXI system
resources and specific details of installed Pickering cards, highlighting any
potential configuration issues.

In the diagnostic report, all the installed Pickering cards should be listed in the
"Pilpxi information" section - if one or more cards is missing it may be possible to
determine the reason by referring to the PCI configuration dump contained in the
report, but interpretation of this information is far from straightforward, and the
best course is to contact Pickering support: support@pickeringtest.com, if
possible including a copy of the diagnostic report.

In the "VISA information" section, if VISA is not installed its absence will be
reported. The pipx40 driver cannot function without VISA. VISA is a component of
National Instruments LabWindows/CVI and LabVIEW, or is available as a
standalone environment. If the installed VISA version is reported as too old to
operate Pickering cards, you should contact National Instruments for an updated
version - upgrades are normally available from the National Instruments website
http://www.ni.com.

If VISA is present and is of a sufficiently recent version, the section "Pipx40
information" should contain a listing similar to "Pilpxi information".

Please note that the Diagnostic Utility cannot access cards if they are currently
opened by some other application, such as the Test Panels or Terminal Monitor.

Pickering Interfaces PXI VISA Driver - pipx40

193

Application Notes

Application Notes

This section contains application notes on the following topics:

• BRIC Operation
• Closure Limits
• Execution Speed
• Isolation Switching
• Multiprocessing and Multithreading
• Simple programmable Resistor Cards
• Segmented Matrix
• Unsegmented Matrix

Pickering Interfaces PXI VISA Driver - pipx40

194

BRIC Operation

BRIC closure limits

As with other high-density units, for a BRIC the pipx40 driver imposes a limit on
the maximum number of channel closures - see Closure Limits. Although
pipx40_setDriverMode offers a means of disabling this limit, the extraordinarily
high packing density in BRIC units makes observation of maximum closure limits
particularly important. The consequences of turning on an excessive number of
crosspoints can be appreciated from the fact that each activated crosspoint may
consume around 10mA at 5V (50mW, or 1W per 20 crosspoints). The power
consumption of a large BRIC with all crosspoints energised would be beyond the
capacity of the system power supply and backplane connectors, never mind its
cooling capabilities. For this reason BRIC units are fuse-protected against
overcurrent. However, it cannot protect against local hot-spots within a BRIC if
too large a block of physically adjacent crosspoints is energised. Although the
fuse is self-resetting under moderate overload, a massive overload may cause it
to rupture permanently.

BRIC daughtercard removal

In the event of a BRIC daughtercard being removed for servicing, operation of the
entire unit is normally disabled. It is possible to allow continued operation in spite
of this fault condition using the pipx40_MODE_IGNORE_TEST option bit in
pipx40_setDriverMode. When this mode is set, the tests performed when the card
is opened will still detect the fault and flag it in the card's pipx40_getCardStatus
value (bit pipx40_STAT_HW_FAULT = set); however it will no longer be flagged
as disabled (bit pipx40_STAT_DISABLED = clear), allowing continued operation.

Multifunction BRICs

Multifunction BRICs have independently controlled isolation switches. In operating
these units it is advised that where hot-switching occurs programmers ensure
that matrix crosspoint relays hot-switch, and isolation relays cold-switch. This
avoids concentrating the contact wear caused by hot-switching in the isolation
relays, which could lead to a reduction in their operational life. The preferred
operating sequences for hot-switching are:

• When closing a crosspoint, first close the isolation switch, then the
crosspoint switch

• When opening a crosspoint, first open the crosspoint, then the isolation
switch

Pickering Interfaces PXI VISA Driver - pipx40

195

Closure Limits

The high switch density attained in certain System 40/45/50 cards, particularly
high-density matrix types, necessitates close packing of relays and airflow is quite
restricted. If excessive numbers of relays were energised for a prolonged period
overheating could occur. For example, in model 40-531 simultaneous
energisation of all 256 relays would yield a power dissipation of around 17W. In
BRIC units the situation is even more extreme - see BRIC Operation. To guard
against this danger the software driver places a limit on the number of
crosspoints that can be energised simultaneously. The limits imposed by the
driver are set with regard to operating temperature levels and will not cause any
difficulty for typical matrix usage, where only a small proportion of crosspoints
are simultaneously ON. A sub-unit's closure limit can be discovered using the
pipx40_getClosureLimit function.

In some models, energisation of too many relays would cause the card's supply
current to exceed the maximum available from the system backplane, with the
potential for overheating and damage to the card and backplane connectors.

The software driver does however provide a method of disabling this protection.
Calling the function pipx40_setDriverMode with the bit pipx40_MODE_UNLIMITED
set allows an unlimited number of crosspoints to be energised simultaneously.
This feature should be used with EXTREME CAUTION. Although it may be safe
to energise larger numbers of crosspoints where ON times are short and duty
cycle is low, it must be borne in mind that if the user's program were to halt in
the ON state (for example at a breakpoint when debugging) the danger of
overheating is present.

Some models incorporate fuses to protect against simultaneous activation of a
hugely excessive number of channels. These are self-resetting in moderate
overload, and operation will be restored when the fault condition clears.

Pickering Interfaces PXI VISA Driver - pipx40

196

Execution Speed

Internal optimisations

Generally, the pipx40 driver optimises a card's internal switch operations as far
as possible. For example in a single-channel multiplexer (MUX type) with isolation
switching, if a channel-change is requested the isolation switch is not cycled. This
saves both time and mechanical wear on the switch.

Break-before-make action

By default, the pipx40 driver enforces Break-Before-Make (BBM) action and
settling delays (to cope with contact bounce) on all switching operations. This
ensures 'clean' switching actions and minimises the danger of switch damage due
to conflicting contact closures.

For time-critical applications the driver can be set to omit all sequencing delays
using the pipx40_MODE_NO_WAIT option of pipx40_setDriverMode. This causes
the driver to return control to the application program in the shortest possible
time. The function pipx40_getCardStatus can then be used at a later time to
determine when operations on a particular card have completed (indicated by the
bit pipx40_STAT_BUSY becoming clear). By this method a number of switching
operations (and/or other program activity) can be executed in parallel rather than
sequentially. However the programmer must guard against switch conflicts that
might transiently cause, say, the shorting of a power supply and consequent
switch damage.

In some cards (for example model 40-745), making an individual channel
selection involves several physical relays. Normally, sequencing delays are
imposed to ensure that no unwanted transient connections occur. Setting
pipx40_MODE_NO_WAIT bypasses these delays, and the programmer must bear
in mind the potential for transient conflicts.

Default driver action is restored by executing pipx40_setDriverMode with the
pipx40_MODE_NO_WAIT bit clear.

Many System 40/45/50 relay cards exhibit very short basic execution times in the
order of a few tens of microseconds; however BBM and settling delays associated
with relays may extend from a few hundred microseconds (for small reed relays)
to some tens of milliseconds (for microwave switches). Here, setting
pipx40_MODE_NO_WAIT and appropriate programming can free a significant
amount of CPU time for other purposes.

Pickering Interfaces PXI VISA Driver - pipx40

197

There are some exceptions to the above: for example digital outputs generally
have zero settling time and pipx40_MODE_NO_WAIT offers no performance
advantage.

To summarise, where execution speed is of paramount importance setting
pipx40_MODE_NO_WAIT can offer significant advantages for many cards;
however it is more demanding for the programmer, requiring an understanding of
the operational characteristics of specific card types and taking greater account of
conditions in the switched circuits.

Processor speed

A faster processor might be expected to yield faster operation. However for many
cards much of a function's execution time is spent waiting for switch contacts to
stabilise, so unless pipx40_MODE_NO_WAIT is invoked little improvement will be
seen. Further, modern processors are capable of operating many cards near or
beyond their hardware limits, and the pipx40 driver includes timing control to
ensure reliable operation. Therefore increases in processor speed beyond about
3GHz may well give no actual improvement in operating speed.

Pickering Interfaces PXI VISA Driver - pipx40

198

Isolation Switching

Isolation switching is incorporated in particular models for a variety of reasons:

• Reducing capacitive loading on a node. In low-frequency units, reduced
capacitive loading gives faster response times when medium to high
impedance signals are being carried.

• Reducing circuit leakage current. Reduced leakage current in the switch
circuits is advantageous where low-current measurements are involved.

• Reducing the length of circuit stubs on a node. In high-frequency units,
reduced stub lengths give better RF performance.

• Providing alternate switching functionality. Some versatile models utilise
isolation switching to support additional operating modes.

Automatic isolation switching

Isolation and loopthru switches are normally controlled automatically by the
pipx40 driver, and their operation is entirely transparent to the user.

In some applications or for fault diagnostic purposes it may be desirable to
control isolation and loopthru switches independently. There are two ways of
achieving this:

1. In matrix types having auto-isolation and/or auto-loopthru, function
pipx40_operateSwitch permits explicit control of individual switches.

2. Cards can usually be reconfigured to allow independent control of isolation
or loopthru switches using the ordinary control functions - if you have such
a requirement please contact support@pickeringtest.com.

Pickering Interfaces PXI VISA Driver - pipx40

199

Multiprocessing and Multithreading

Multiprocessing involves operation of cards by multiple software processes (i.e.
programs); multithreading uses multiple execution threads within a single
program. Multithreading is a feature of programming environments such as
LabVIEW, and can also be managed through the standard Windows API.

Process-safety

The pipx40 driver is process-safe.

Note that a card is automatically cleared when opened by pipx40_init,
irrespective of the value of the reset_instr parameter. The reason for this is that
on initialisation a card has no means of reporting its current output state to the
driver, which must therefore initialise it to a known state.

Thread-safety

The pipx40 driver is thread-safe.

Execution of a pipx40 driver function by one thread simply blocks its execution by
other threads or processes. This includes any settling delay periods, ensuring that
no unwanted overlaps occur in operation.

Function pipx40_setDriverMode

The settings made by pipx40_setDriverMode are process-specific, i.e. multiple
processes can operate with different settings.

Pickering Interfaces PXI VISA Driver - pipx40

200

Simple Programmable Resistor Cards

Applicable to models:

• 40-290
• 40-291
• 40-295
• 40-296
• 50-295

Simple programmable resistor cards employ a series chain of individual fixed
resistors, each having an associated shorting switch. In standard models the fixed
resistor values are arranged in a binary sequence. The discussion below relates to
16-bit models; some considerations may be either more or less significant in
models with higher or lower resolution.

Application considerations: 16-bit models

The binary resistor chain employed in a 16-bit programmable resistor card
provides a notional resolution of about 0.002% (or 15ppm) of the total
resistance.

In exploiting this high resolution there are a number of factors which should be
taken into account:

• The absolute accuracy of the resistors fitted may be only 1% or 0.5% (i.e.
less than 8 bits).

• For 'custom' resistor-chain values, components having the precise nominal
values required may be unobtainable, and the nearest available preferred
values may have to be used.

• The resistors have a non-zero temperature coefficient, typically of
±50ppm/°C, though values down to ±15ppm/°C may be obtainable.

• The closed-contact resistance of the switch shunting each resistor is of the
order of 100 milliohms. In the reed switches employed in these cards it is
highly stable, provided they are not subjected to overcurrent. This
includes transient currents, such as discharging a long cable that is pre-
charged to a significant voltage.

• Wiring and connectors impose a small resistance in series with the resistor
chain, of perhaps 200 milliohms.

Some implications of these factors are:

• The relationship between the switch pattern and the programmed
resistance value is not guaranteed to be monotonic (i.e. a change in
switch pattern that might be expected to yield an increase in resistance
value may in fact decrease it, and vice-versa).

Pickering Interfaces PXI VISA Driver - pipx40

201

• A resistance value of zero ohms is unobtainable. The lowest value that can
be achieved is composed of the closed-contact resistances of 16 relays in
series, together with wiring and connector resistance. A value of around
1.8 ohms is typical.

• Temperature effects can significantly exceed the notional resolution. For
example, a temperature change of only 5°C may cause a resistance
change of ±250ppm, or 17 times the notional resolution. The resistance of
wiring and closed switch contacts is also affected by temperature.

The cards have the facility to store in non-volatile memory a 16-bit value
associated with each resistor. These values can be used to calibrate the card to
provide greater setting accuracy than the basic absolute accuracy of the resisors
employed in the chain. Usage and interpretation of stored values is entirely user-
specific: the software driver merely provides a mechanism (functions
pipx40_writeCalibration and pipx40_readCalibration) for storing and retrieving
them.

A possible scheme for utilising the stored calibration values might be:

• Employ the stored values to somehow represent the deviation of each
resistor's actual value from its nominal value (say, as a percentage:
treated as a signed quantity the 16-bit value might be chosen to represent
a range of ±32.767%).

• Use a calibration procedure to obtain and store an appropriate value for
each individual resistor.

• Software must then make use of the stored calibration data when
programming specific resistance values, taking into account extraneous
circuit resistances. Because of the non-monotonic relationship between
switch pattern and resistance value, some calculation is necessary to
obtain a pattern matching a chosen value. A simple C program
ProgResFind.c demonstrates a possible approach to this.

Pickering Interfaces PXI VISA Driver - pipx40

202

ProgResFind.c

This program demonstrates a possible algorithm for use in obtaining a specific
resistance value in a 16-bit programmable resistor card, using stored calibration
values for enhanced accuracy.

/* Program: ProgResFind.c */

/* Programmable resistor: find a 16-bit code to give a particular
resistance value */

/* D.C.H 16/8/01 */

/* Overall accuracy is determined by the accuracy of the calibration
values employed */

#include <stdio.h>

/* To output debug info... */

/* *** #define DEBUG */

/* === SEARCH VALUES
== */

/* The resistance value to search for, ohms */

double search_res = 1000.0;

/* The required tolerance (fractional) */

double search_tol = 0.0005; /* = 0.05% */

/* === CALIBRATION VALUES
=== */

/* Offset resistance value, ohms: includes connector and wiring.

 This example includes a 50R offset resistor. */

/* For accuracy, this should ideally be a CALIBRATED value */

double res_offset = 50.2;

Pickering Interfaces PXI VISA Driver - pipx40

203

/* The installed resistor values, ohms */

/* For accuracy better than resistor tolerance these must be
CALIBRATED values,

 not NOMINAL ones. */

double res_value[16] =

{

 0.12,

 0.22,

 0.56,

 1.13,

 2.26,

 4.42,

 8.2,

 18.0,

 37.4,

 71.5,

 143.0,

 287.0,

 576.0,

 1130.0,

 2260.0,

 4530.0

};

/* Relay closed-contact resistance, ohms: assumed identical for all
relays */

double res_contact = 0.1;

/*
===
=== */

Pickering Interfaces PXI VISA Driver - pipx40

204

/* Prototype */

long find_code(double value, double tolerance);

int main(void)

{

 long code;

 printf("Programmable Resistor Code Finder\n");

 printf("=================================\n");

 printf("D.C.H 16/8/01\n\n");

 printf("Search for %8.2f ohms (+/- %1.3f%%)...\n", search_res,
search_tol * 100);

 code = find_code(search_res, search_tol);

 if (code < 0)

 printf("No code matches this value within the specified
tolerance\n");

 else

 printf("Code 0x%04X\n", code);

 return 0;

}

/* Function: parallel resistor calculation */

double parallel_resistance(double r1, double r2)

{

 return ((r1 * r2) / (r1 + r2));

}

/* Function: find the first code whose actual value matches the
search value

Pickering Interfaces PXI VISA Driver - pipx40

205

 within the specified tolerance band.

 Returns the code (0x0000 thru 0xFFFF).

 If no code generates a value that lies within the specified
tolerance band,

 returns -1.

 The method simply searches all codes - some optimisation is
possible. */

long find_code(double value, double tolerance)

{

 long code;

 int bit;

 double res;

 /* Search all codes */

 for (code = 0; code < 0x10000L; code++)

 {

 res = res_offset;

 for (bit = 0; bit < 16; bit++)

 {

 if (code & (1 << bit))

 {

 /* This bit is ON (switch closed) */

 res += parallel_resistance(res_value[bit],
res_contact);

 }

 else

 {

 /* This bit is OFF (switch open) */

 res += res_value[bit];

 }

Pickering Interfaces PXI VISA Driver - pipx40

206

 }

 if (res > (value * (1.0 - tolerance)) && res < (value * (1.0
+ tolerance)))

 {

#ifdef DEBUG

 printf("Code 0x%04X = %8.2f ohms\n", code, res);

#endif

 return code;

 }

 }

 return -1;

}

Pickering Interfaces PXI VISA Driver - pipx40

207

Segmented Matrix

Segmented Matrix

A segmented matrix is one in which groups of lines on an axis are served by
separate sets of isolation switches on the opposing axis.

Configurations with automated isolation switching

In automated configurations, when operated by functions such as:

• pipx40_setChannelState
• pipx40_setChannelPattern
• pipx40_setCrosspointState

isolation switching is handled automatically by the driver, and the sub-unit's
internal structure is immaterial to a user; use of pipx40_operateSwitch however
requires an understanding of this.

Automated configuration examples:

• 40-725-511: 8 x 9, segmented on both axes
• 40-726-751-LT: 12 x 8, segmented on both axes with loopthru on Y-axis

only
• 40-560-021: 50 x 8 specimen BRIC configuration, segmented on X-axis

(Y-isolation only)

Non-automated configurations

In non-automated configurations isolation switching is controlled independently
from the matrix, using normal driver functions.

Non-automated configuration example:

• 40-560-021-M: 50 x 8 specimen BRIC-M configuration, segmented on X-
axis (Y-isolation only)

Pickering Interfaces PXI VISA Driver - pipx40

208

Segmented Matrix 40-725-511

40-725-511 is an 8 x 9 matrix, segmented on both axes.

In its standard configuration as a single 8 x 9 matrix sub-unit, when channel
selections are made using functions such as:

• pipx40_setChannelState
• pipx40_setChannelPattern
• pipx40_setCrosspointState

operation of isolation switches is automated to optimise connections for X - Y
signal routing. pipx40_operateSwitch allows access to individual switches for
other routing schemes or fault diagnostic purposes.

Note that an alternate logical configuration treats the card as multiple sub-units,
giving independent access to all switches via the ordinary control functions: for
that configuration pipx40_operateSwitch is not applicable.

Attribute values

The relevant values obtained by pipx40getSubAttribute when configured for auto-
isolation are:

Attribute code Attribute value

pipx40_SUB_ATTR_CHANNEL_SUBSWITCHES 1

pipx40_SUB_ATTR_X_ISO_SUBSWITCHES 1

pipx40_SUB_ATTR_Y_ISO_SUBSWITCHES 1

pipx40_SUB_ATTR_NUM_X_SEGMENTS 2

pipx40_SUB_ATTR_X_SEGMENT01_SIZE 4

pipx40_SUB_ATTR_X_SEGMENT02_SIZE 4

pipx40_SUB_ATTR_NUM_Y_SEGMENTS 2

pipx40_SUB_ATTR_Y_SEGMENT01_SIZE 4

pipx40_SUB_ATTR_Y_SEGMENT02_SIZE 5

Global crosspoint switch numbers

These numbers correspond to the channel numbers used with
pipx40_setChannelState and are valid for pipx40_operateSwitch when:

• switchFunc = pipx40_SW_FUNC_CHANNEL
• segNum = 0

Pickering Interfaces PXI VISA Driver - pipx40

209

Segment-local crosspoint switch numbers

These switch numbers are valid for pipx40_operateSwitch when:

• switchFunc = pipx40_SW_FUNC_CHANNEL
• segNum = 1 thru 4

Pickering Interfaces PXI VISA Driver - pipx40

210

Isolation switch numbers

These switch numbers are valid for pipx40_operateSwitch when:

• switchFunc = pipx40_SW_FUNC_X_ISO or pipx40_SW_FUNC_Y_ISO
• segNum = 1 or 2

Pickering Interfaces PXI VISA Driver - pipx40

211

Pickering Interfaces PXI VISA Driver - pipx40

212

Segmented Matrix 40-726-751-LT

Operation of this model's crosspoint and isolation switches by
pipx40_operateSwitch is similar to that of 40-725-511, which only differs
dimensionally - the size of each segment in 40-726 being 6 x 4.

In addition, this model incorporates loopthru switches on all lines of its Y-axis.

Note that an alternate logical configuration treats the card as multiple sub-units,
giving independent access to all switches via the ordinary control functions: for
that configuration pipx40_operateSwitch is not applicable.

Attribute values

The relevant values obtained by pipx40_getSubAttribute when configured for
auto-isolation and auto-loopthru are:

Attribute code Attribute value

pipx40_SUB_ATTR_CHANNEL_SUBSWITCHES 1

pipx40_SUB_ATTR_X_ISO_SUBSWITCHES 1

pipx40_SUB_ATTR_Y_ISO_SUBSWITCHES 1

pipx40_SUB_ATTR_X_LOOPTHRU_SUBSWITCHES 0

pipx40_SUB_ATTR_Y_LOOPTHRU_SUBSWITCHES 1

pipx40_SUB_ATTR_NUM_X_SEGMENTS 2

pipx40_SUB_ATTR_X_SEGMENT01_SIZE 6

pipx40_SUB_ATTR_X_SEGMENT02_SIZE 6

pipx40_SUB_ATTR_NUM_Y_SEGMENTS 2

pipx40_SUB_ATTR_Y_SEGMENT01_SIZE 4

pipx40_SUB_ATTR_Y_SEGMENT02_SIZE 4

Pickering Interfaces PXI VISA Driver - pipx40

213

Segmented Matrix 40-560-021

This documents a specimen 40-560-021 BRIC configuration, as a 50 x 8 matrix
using two 46 x 8 daughtercards; the second daughtercard being partially
populated as 4 x 8. This design is segmented only on the X-axis (each
daughtercard having Y-isolation switches only).

In its standard configuration as a single 50 x 8 matrix sub-unit, when channel
selections are made using functions such as:

• pipx40_setChannelState
• pipx40_setChannelPattern
• pipx40_setCrosspointState

operation of isolation switches is automated to optimise connections for X - Y
signal routing. pipx40_operateSwitch allows access to individual switches for
other routing schemes or fault diagnostic purposes.

Note that an alternate logical configuration is possible, the unit being treated as
multiple sub-units and giving independent access to all switches via the ordinary
control functions: for that configuration pipx40_operateSwitch would not be
applicable.

In a unit employing a larger number of daughtercards, the number of X-segments
is correspondingly increased.

Attribute values

The relevant values obtained by pipx40_getSubAttribute when configured for
auto-isolation are:

Attribute code Attribute value

pipx40_SUB_ATTR_CHANNEL_SUBSWITCHES 1

pipx40_SUB_ATTR_X_ISO_SUBSWITCHES 0

pipx40_SUB_ATTR_Y_ISO_SUBSWITCHES 1

pipx40_SUB_ATTR_NUM_X_SEGMENTS 2

pipx40_SUB_ATTR_X_SEGMENT01_SIZE 46

pipx40_SUB_ATTR_X_SEGMENT02_SIZE 4

pipx40_SUB_ATTR_NUM_Y_SEGMENTS 1

pipx40_SUB_ATTR_Y_SEGMENT01_SIZE 8

Global crosspoint switch numbers

Pickering Interfaces PXI VISA Driver - pipx40

214

These numbers correspond to the channel numbers used with
pipx40_setChannelState and are valid for pipx40_operateSwitch when:

• switchFunc = pipx40_SW_FUNC_CHANNEL
• segNum = 0

Segment-local crosspoint switch numbers

These switch numbers are valid for pipx40_operateSwitch when:

• switchFunc = pipx40_SW_FUNC_CHANNEL
• segNum = 1 or 2

Pickering Interfaces PXI VISA Driver - pipx40

215

Isolation switch numbers

These switch numbers are valid for pipx40_operateSwitch when:

• switchFunc = pipx40_SW_FUNC_Y_ISO
• segNum = 1 or 2

Pickering Interfaces PXI VISA Driver - pipx40

216

Pickering Interfaces PXI VISA Driver - pipx40

217

Segmented Matrix 40-560-021-M

This documents a specimen 40-560-021-M (BRIC-M) configuration, as a 50 x 8
matrix using two 46 x 8 daughtercards; the second daughtercard being partially
populated as 4 x 8. This design is segmented only on the X-axis (each
daughtercard having Y-isolation switches only).

BRIC-M and similar configurations provide two Y-buses, each of which can be
connected to the switch matrix through its own set of isolation relays. In such
models isolation switching cannot be automated; instead it is operated through
two separate SWITCH sub-units, giving a logical configuration:

Sub-unit Function

1: MATRIX(50X8) The switch matrix

2: SWITCH(16) Y-bus 1 isolation switches

3: SWITCH(16) Y-bus 2 isolation switches

Isolation switch sub-unit channel assignments are:

Channel Isolator for row X-segment

1 Y1 1 (X1 - X46)

2 Y2 1 (X1 - X46)

3 Y3 1 (X1 - X46)

4 Y4 1 (X1 - X46)

5 Y5 1 (X1 - X46)

6 Y6 1 (X1 - X46)

7 Y7 1 (X1 - X46)

8 Y8 1 (X1 - X46)

9 Y1 2 (X47 - X50)

10 Y2 2 (X47 - X50)

11 Y3 2 (X47 - X50)

12 Y3 2 (X47 - X50)

13 Y4 2 (X47 - X50)

14 Y6 2 (X47 - X50)

15 Y7 2 (X47 - X50)

16 Y8 2 (X47 - X50)

Pickering Interfaces PXI VISA Driver - pipx40

218

In a unit employing a larger number of daughtercards, the number of X-segments
is correspondingly increased; and hence the size of the isolation sub-units.

Attribute values

Significant values obtained by pipx40_getSubAttribute from sub-unit 1 for this
configuration are:

Attribute code Attribute value

pipx40_SUB_ATTR_CHANNEL_SUBSWITCHES 1

pipx40_SUB_ATTR_X_ISO_SUBSWITCHES 0

pipx40_SUB_ATTR_Y_ISO_SUBSWITCHES 0

pipx40_SUB_ATTR_NUM_X_SEGMENTS 2

pipx40_SUB_ATTR_X_SEGMENT01_SIZE 46

pipx40_SUB_ATTR_X_SEGMENT02_SIZE 4

pipx40_SUB_ATTR_NUM_Y_SEGMENTS 1

pipx40_SUB_ATTR_Y_SEGMENT01_SIZE 8

Pickering Interfaces PXI VISA Driver - pipx40

219

Unsegmented Matrix

An unsegmented matrix is one in which all lines on an axis are served by a single
set of isolation switches on the opposing axis.

Examples:

• there is currently no real example of this configuration

Pickering Interfaces PXI VISA Driver - pipx40

220

Secure Functions

Secure Functions

A number of established pipx40 functions operate insecurely, by accessing
character string or numeric array buffers whose length is unspecified. Equivalent
secure functions now exist, having an additional parameter to specify the size of
the buffer they are being passed (pipx40_revisionQuery_s has two extra
parameters).

Insecure VISA
standard function

Equivalent secure
function (card
specific)

pipx40_error_message pipx40_errorMessage_s
pipx40_error_query pipx40_errorQuery_s
pipx40_revision_query pipx40_revisionQuery_s
pipx40_self_test pipx40_selfTest_s

Insecure card specific
function

Equivalent secure function

pipx40_getCardId pipx40_getCardId_s
pipx40_getDiagnostic pipx40_getDiagnostic_s
pipx40_getSubType pipx40_getSubType_s
pipx40_attenGetType pipx40_attenGetType_s
pipx40_psuGetType pipx40_psuGetType_s
pipx40_readInputPattern pipx40_readInputPattern_s
pipx40_getMaskPattern pipx40_getMaskPattern_s
pipx40_getChannelPattern pipx40_getChannelPattern_s
pipx40_setMaskPattern pipx40_setMaskPattern_s
pipx40_setChannelPattern pipx40_setChannelPattern_s

Pickering Interfaces PXI VISA Driver - pipx40

221

Secure versions of VISA standard functions

pipx40_errorMessage_s

VB Function pipx40_errorMessage_s (ByVal vi As Long, ByVal
statusCode As Long, ByVal message As String, ByVal
strLen As Long) As Long

C++ ViStatus pipx40_errorMessage_s (ViSession vi, ViStatus
statusCode, ViPString message, ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

statusCode in Instrument driver error code

message out Error message

strLen in Number of characters available in the 'message'
buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_errorMessage_s (or pipx40_error_message).

Description

This function translates the error return value from a pipx40 instrument driver
function to a user-readable string.

Remarks

This function offers a more secure alternative to pipx40_error_message. If strLen
is less than the number of characters needed to hold the result (including the
terminating null character), 'message' is made a null string and the function
returns pipx40_ERROR_BUFFER_UNDERSIZE.

The length of the message string will not exceed the value of driver constant
pipx40_MAX_ERR_STR.

Pickering Interfaces PXI VISA Driver - pipx40

222

pipx40_errorQuery_s

VB Function pipx40_errorQuery_s (ByVal vi As Long, ByRef errorCode
As Long, ByVal errorMessage As String, ByVal strLen As
Long) As Long

C++ ViStatus pipx40_errorQuery_s (ViSession vi, ViPInt32 errorCode,
ViPString errorMessage, ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

errorCode out Instrument error code

errorMessage out Error message

strLen in Number of characters available in the
'error_message' buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Return an error code and corresponding message from the instrument’s error
queue.

Remarks

This function only exists for consistency. It would offer a more secure alternative
to pipx40_error_query, but since this feature is not supported by the instrument
it simply returns the status code VI_WARN_NSUP_ERROR_QUERY.

Pickering Interfaces PXI VISA Driver - pipx40

223

pipx40_revisionQuery_s

VB Function pipx40_revisionQuery_s (ByVal vi As Long, ByVal
driverRev As String, ByVal instrRev As String, ByVal
drvStrLen As Long, ByVal instStrLen As Long) As Long

C++ ViStatus pipx40_revisionQuery_s (ViSession vi, ViPString
driverRev, ViPString instrRev, ViUInt32 drvStrLen,
ViUInt32 instStrLen);

Parameter I/O Description

vi in Instrument handle

driverRev out Driver revision

instrRev out Instrument revision

drvStrLen in Number of characters available in the 'driverRev'
buffer

instStrLen in Number of characters available in the 'instrRev'
buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

This function returns the instrument driver revision and instrument revision
codes. The instrRev value represents the hardware/firmware version of the unit.

Remarks

This function offers a more secure alternative to pipx40_revision_query. If either
drvStrLen or instStrLen is less than the number of characters needed to hold the
corresponding result (including its terminating null character), that string is made
a null string and the function returns pipx40_ERROR_BUFFER_UNDERSIZE.

The lengths of the driverRev and instrRev strings will not exceed the values of
driver constants pipx40_MAX_DRIVER_REV_STR and
pipx40_MAX_INSTR_REV_STR respectively.

Pickering Interfaces PXI VISA Driver - pipx40

224

pipx40_selfTest_s

VB Function pipx40_selfTest_s (ByVal vi As Long, ByRef testResult
As Integer, ByVal testMessage As String, ByVal strLen
As Long) As Long

C++ ViStatus pipx40_selfTest_s (ViSession vi, ViPInt16 testResult,
ViPString testMessage, ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

testResult out Numeric result from self-test operation

testMessage out Self-test status message

strLen in Number of characters available in the 'testMessage'
buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
pipx40_errorMessage_s (or pipx40_error_message).

Description

This function causes the instrument to perform a self-test and returns the result
of that self-test.

Remarks

This function offers a more secure alternative to pipx40_self_test. If strLen is less
than the number of characters needed to hold the result (including the
terminating null character), 'testMessage' is made a null string and the function
returns pipx40_ERROR_BUFFER_UNDERSIZE.

The testResult parameter is a numeric code for the test result. The testMessage
parameter returns a self-test status message. The codes are listed in the table
below.

Pickering Interfaces PXI VISA Driver - pipx40

225

Driver constant Numeric
Value

Description

 0 Self-test passed with no
errors

pipx40_FAULT_UNKNOWN 1 Unspecified fault

pipx40_FAULT_WRONG_DRIVER 2 Incompatible software driver
version

pipx40_FAULT_EEPROM_ERROR 3 EEPROM data error

pipx40_FAULT_HARDWARE 4 Hardware defect

pipx40_FAULT_PARITY 5 Parity error

pipx40_FAULT_CARD_INACCESSIBLE 6 Card cannot be accessed
(failed/removed/unpowered)

pipx40_FAULT_UNCALIBRATED 7 One or more sub-units is
uncalibrated

pipx40_FAULT_CALIBRATION_DUE 8 One or more sub-units is due
for calibration

The length of the testMessage string will not exceed the value of the driver
constant pipx40_MAX_SELF_TEST_STR.

Diagnostic information on fault conditions indicated in the test result can be
obtained using pipx40_getDiagnostic_s.

Pickering Interfaces PXI VISA Driver - pipx40

226

Secure versions of card specific functions

pipx40_getCardId_s

VB Function pipx40_getCardId_s (ByVal vi As Long, ByVal id
As String, ByVal strLen As Long) As Long

C++ ViStatus pipx40_getCardId_s (ViSession vi, ViPString id,
ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

id out Instrument identification string

strLen in Number of characters available in the
'id' buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains the identification string of the specified card. The string contains these
elements:

PICKERING INTERFACES,<type code>,<serial number>,<revision code>.

The <revision code> value represents the hardware version of the unit - cards
have no firmware on-board.

Remarks

This function offers a more secure alternative to pipx40_getCardId. If strLen is
less than the number of characters needed to hold the result (including the
terminating null character), 'id' is made a null string and the function returns
pipx40_ERROR_BUFFER_UNDERSIZE.

Pickering Interfaces PXI VISA Driver - pipx40

227

The length of the id string will not exceed the value of driver constant
pipx40_MAX_ID_STR.

Visual Basic Note

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(id, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

228

pipx40_getDiagnostic_s

VB Function pipx40_getDiagnostic_s (ByVal vi As Long, ByVal
message As String, ByVal strLen As Long) As Long

C++ ViStatus pipx40_getDiagnostic_s (ViSession vi, ViPString
message, ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

message out Instrument diagnostic string

strLen in Number of characters available in the
'message' buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains the diagnostic string of the specified card, giving expanded information
on any fault conditions indicated by the pipx40_getCardStatus value, or the result
from pipx40_selfTest_s or pipx40_self_test.

Remarks

This function offers a more secure alternative to pipx40_getDiagnostic. If strLen
is less than the number of characters needed to hold the result (including the
terminating null character), 'message' is made a null string and the function
returns pipx40_ERROR_BUFFER_UNDERSIZE.

The result string may include embedded newline characters, coded as ASCII
linefeed (0Ah).

The length of the result string will not exceed the value of driver constant
pipx40_MAX_DIAG_LENGTH.

Pickering Interfaces PXI VISA Driver - pipx40

229

Warning

Formatting and content of the diagnostic string may change as enhanced
diagnostic features are made available. It should therefore not be interpreted
programatically.

Visual Basic Notes

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(message, character_count).

If the diagnostic string is to be displayed in Visual Basic, any embedded linefeed
characters (0Ah) should be expanded to vbCrLf.

Pickering Interfaces PXI VISA Driver - pipx40

230

pipx40_getSubType_s

VB Function pipx40_getSubType_s (ByVal vi As Long, ByVal subUnit
As Long, ByVal out As Boolean, ByVal subType As
String, ByVal strLen As Long) As Long

C++ ViStatus pipx40_getSubType_s (ViSession vi, ViUInt32 subUnit,
ViBoolean out, ViPString subType, ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

out in sub-unit function: 0 for INPUT, 1 for OUTPUT

subType out character string to receive the result

strLen in Number of characters available in the 'subType'
buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains a type description of a sub-unit, as a text string.

subType string Description

INPUT(<size>) Digital inputs

SWITCH(<size>) Uncommitted switches

Pickering Interfaces PXI VISA Driver - pipx40

231

MUX(<size>) Multiplexer, single-
channel only

MUXM(<size>) Multiplexer, multi-
channel

MATRIX(<columns>X<rows>) Matrix, LF

MATRIXR(<columns>X<rows>) Matrix, RF

DIGITAL(<size>) Digital outputs

RES(<size>) Programmable resistor

ATTEN(<number of pads>) Programmable RF
attenuator

PSUDC(0) Power supply, DC

BATT(<voltage DAC
resolution, bits>)

Battery simulator

VSOURCE(<voltage DAC
resolution, bits>)

Programmable voltage
source

MATRIXP(<columns>X<rows>) Matrix with restricted
operating modes

Note that for some types additional information is obtainable using alternate
functions:

• Programmable RF attenuator: pipx40_attenGetType_s
• Power supply: pipx40_psuGetType_s

Remarks

Pickering Interfaces PXI VISA Driver - pipx40

232

This function offers a more secure alternative to pipx40_getSubType. If strLen is
less than the number of characters needed to hold the result (including the
terminating null character), 'subType' is made a null string and the function
returns pipx40_ERROR_BUFFER_UNDERSIZE.

The length of the result string will not exceed the value of driver constant
pipx40_MAX_SUB_TYPE_STR.

Visual Basic Note

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(subType, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

233

pipx40_attenGetType_s

VB Function pipx40_attenGetType_s (ByVal vi As Long, ByVal subUnit
As Long, ByVal subType As String, ByVal strLen As
Long) As Long

C++ ViStatus pipx40_attenGetType_s (ViSession vi, ViUInt32 subUnit,
ViPString subType, ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

subType out Character string to receive the result

strLen in Number of characters available in the 'subType'
buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains a type description of an attenuator sub-unit, as a text string.

subType string Description

ATTEN(<number of steps>,<step
size in dB>)

Programmable RF
attenuator

Remarks

This function offers a more secure alternative to pipx40_attenGetType. If strLen
is less than the number of characters needed to hold the result (including the
terminating null character), 'subType' is made a null string and the function
returns pipx40_ERROR_BUFFER_UNDERSIZE.

Pickering Interfaces PXI VISA Driver - pipx40

234

The length of the result string will not exceed the value of driver constant
pipx40_MAX_ATTEN_TYPE_STR.

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads in the attenuator can be obtained using
pipx40_getSubType_s.

Visual Basic Note

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(subType, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

235

pipx40_psuGetType_s

VB Function pipx40_psuGetType_s (ByVal vi As Long, ByVal subUnit
As Long, ByVal subType As String, ByVal strLen As
Long) As Long

C++ ViStatus pipx40_psuGetType_s (ViSession vi, ViUInt32 subUnit,
ViPString subType, ViUInt32 strLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating the sub-unit for which
information is to be obtained

subType out Character string to receive the result

strLen in Number of characters available in the 'subType'
buffer

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains a type description of a power supply sub-unit, as a text string.

subType string Description

PSUDC(<voltage rating>,<current
rating>)

Power supply,
DC

Remarks

This function offers a more secure alternative to pipx40_psuGetType. If strLen is
less than the number of characters needed to hold the result (including the
terminating null character), 'subType' is made a null string and the function
returns pipx40_ERROR_BUFFER_UNDERSIZE.

Pickering Interfaces PXI VISA Driver - pipx40

236

The length of the result string will not exceed the value of driver constant
pipx40_MAX_PSU_TYPE_STR.

Visual Basic Note

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(subType, character_count).

Pickering Interfaces PXI VISA Driver - pipx40

237

pipx40_readInputPattern_s

VB Function pipx40_readInputPattern_s (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long, ByVal dataLen
As Long) As Long

C++ ViStatus pipx40_readInputPattern_s (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern, ViUInt32 dataLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) to receive result

dataLen in Number of elements available in the 'pattern' array

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains the current state of all inputs of a sub-unit.

Remarks

This function offers a more secure alternative to pipx40_readInputPattern. If
dataLen is less than the number of elements needed to represent the sub-unit, no
data is copied into 'pattern' and the function returns
pipx40_ERROR_BUFFER_UNDERSIZE.

The result fills the number of least significant bits corresponding to the size of the
sub-unit.

Visual Basic Note

Pickering Interfaces PXI VISA Driver - pipx40

238

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

pipx40_readInputPattern_s(vi, subUnit, pattern, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

pipx40_readInputPattern_s(vi, subUnit, pattern(0), dataLen)

Example Code

See the description of pipx40_setChannelPattern_s for example code using a
secure pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

239

pipx40_getMaskPattern_s

VB Function pipx40_getMaskPattern_s (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long, ByVal dataLen
As Long) As Long

C++ ViStatus pipx40_getMaskPattern_s (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern, ViUInt32 dataLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) to receive result

dataLen in Number of elements available in the 'pattern' array

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains the switch mask of a sub-unit.

Remarks

This function offers a more secure alternative to pipx40_getMaskPattern. If
dataLen is less than the number of elements needed to represent the sub-unit, no
data is copied into 'pattern' and the function returns
pipx40_ERROR_BUFFER_UNDERSIZE.

The result fills the number of least significant bits corresponding to the size of the
sub-unit.

Pickering Interfaces PXI VISA Driver - pipx40

240

For a Matrix sub-unit, the result is folded into the vector on its row-axis. See Data
formats.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

pipx40_getMaskPattern_s(vi, subUnit, pattern, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

pipx40_getMaskPattern_s(vi, subUnit, pattern(0), dataLen)

Example Code

See the description of pipx40_setChannelPattern_s for example code using a
secure pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

241

pipx40_getChannelPattern_s

VB Function pipx40_getChannelPattern_s (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long, ByVal dataLen
As Long) As Long

C++ ViStatus pipx40_getChannelPattern_s (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern, ViUInt32 dataLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) to receive the result

dataLen in Number of elements available in the 'pattern' array

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Obtains the state of all output channels of a sub-unit.

Remarks

This function offers a more secure alternative to pipx40_getChannelPattern. If
dataLen is less than the number of elements needed to represent the sub-unit, no
data is copied into 'pattern' and the function returns
pipx40_ERROR_BUFFER_UNDERSIZE.

The result fills the number of least significant bits corresponding to the size of the
sub-unit.

Pickering Interfaces PXI VISA Driver - pipx40

242

For a Matrix sub-unit, the result is folded into the vector on its row-axis. See Data
formats.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

pipx40_getChannelPattern_s(vi, subUnit, pattern, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

pipx40_getChannelPattern_s(vi, subUnit, pattern(0), dataLen)

Example Code

See the description of pipx40_setChannelPattern_s for example code using a
secure pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

243

pipx40_setMaskPattern_s

VB Function pipx40_setMaskPattern_s (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long, ByVal dataLen
As Long) As Long

C++ ViStatus pipx40_setMaskPattern_s (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern, ViUInt32 dataLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern in Pointer/reference to the one-dimensional array
(vector) containing the mask pattern to be set

dataLen in Number of elements available in the 'pattern' array

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Sets a sub-unit's switch mask to the supplied bit-pattern.

Remarks

This function offers a more secure alternative to pipx40_setMaskPattern. If
dataLen is less than the number of elements needed to represent the sub-unit, no
bits are copied into the mask and the function returns
pipx40_ERROR_BUFFER_UNDERSIZE.

The number of least significant bits corresponding to the size of the sub-unit are
written into the mask. A '1' bit in the mask disables the corresponding switch for
functions:

Pickering Interfaces PXI VISA Driver - pipx40

244

pipx40_setChannelState

pipx40_setCrosspointState

pipx40_setChannelPattern

pipx40_setChannelPattern_s

An error is reported by those functions if an attempt is made to activate a
masked channel.

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

For a Matrix sub-unit, the mask data is folded into the vector on its row-axis. See
Data formats.

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error pipx40_ERROR_ILLEGAL_MASK is
given if an attempt is made to mask it.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

pipx40_setMaskPattern_s(vi, subUnit, pattern, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

pipx40_setMaskPattern_s(vi, subUnit, pattern(0), dataLen)

Example Code

See the description of pipx40_setChannelPattern_s for example code using a
secure pattern-based function.

Pickering Interfaces PXI VISA Driver - pipx40

245

pipx40_setChannelPattern_s

VB Function pipx40_setChannelPattern_s (ByVal vi As Long, ByVal
subUnit As Long, ByRef pattern As Long, ByVal dataLen
As Long) As Long

C++ ViStatus pipx40_setChannelPattern_s (ViSession vi, ViUInt32
subUnit, ViAUInt32 pattern, ViUInt32 dataLen);

Parameter I/O Description

vi in Instrument handle

subUnit in Numeric variable indicating in which sub-unit actions
will take place

pattern out Pointer/reference to the one-dimensional array
(vector) containing the bit-pattern to be written

dataLen in Number of elements available in the 'pattern' array

Return Value

0 = Successful operation. Negative values are error codes and positive values are
warnings. To get a description of the error, pass the error code to
 pipx40_errorMessage_s (or pipx40_error_message).

Description

Sets all output channels of a sub-unit to the supplied bit-pattern.

Remarks

This function offers a more secure alternative to pipx40_setChannelPattern. If
dataLen is less than the number of elements needed to represent the sub-unit, no
bits are copied to its outputs and the function returns
pipx40_ERROR_BUFFER_UNDERSIZE.

The number of least significant bits corresponding to the size of the sub-unit are
written.

Pickering Interfaces PXI VISA Driver - pipx40

246

For a Matrix sub-unit, the data is folded into the vector on its row-axis. See Data
formats.

In some high-density cards the number of simultaneous channel closures that can
be made is restricted in order to prevent overheating. If the number of closures
specified would exceed this limit an error is reported. The maximum number of
closures permitted can be obtained using pipx40_getClosureLimit. Limit values
are such that they should not impact on normal operations. Although it is possible
to override the closure limit using pipx40_setDriverMode this is not
recommended as overheating could endanger both the card itself and the system
in which it is installed.

In the case of a single-channel multiplexer (MUX type) sub-unit this function will
only permit writing an array of nulls to clear it. MUX sub-units are more
conveniently operated using pipx40_setChannelState and pipx40_clearSub.

Visual Basic Note

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

pipx40_setChannelPattern_s(vi, subUnit, pattern, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

pipx40_setChannelPattern_s(vi, subUnit, pattern(0), dataLen)

Example Code

Visual Basic Code Sample

Visual C++ Code Sample

247

Index

1

16-bit.19, 41, 43, 45, 122, 130, 136,
198, 200

3

32-bit... 7

3U ... 1

4

40-170-101..........................18, 19

40-170-102..........................18, 19

40-26018, 20, 136

40-26218, 23, 136

40-26518, 27, 136, 139

40-280 122, 130, 136

40-281 122, 130, 136

40-282 122, 130, 136

40-290 122, 130, 136, 198

40-291 122, 130, 136, 198

40-292136

40-295 122, 130, 136, 198

40-296122, 130, 136, 145, 198

40-29718, 29, 136

40-412 18, 32, 34

40-412-001..........................18, 32

40-412-101..........................18, 34

40-413 18, 35, 37, 39

40-413-001..........................18, 35

40-413-002..........................18, 37

40-413-003..........................18, 39

40-560-021...................... 205, 211

40-560-021-M 205, 215

40-725-511...............205, 206, 210

40-726-751-LT 205, 210

41-180-021............................... 17

41-180-022............................... 17

41-181-021............................... 17

41-181-022............................... 17

41-182-003............................... 17

41-660-001............................... 17

41-661-001............................... 17

41-720 17

41-735-001.................17, 122, 130

41-750-001............. 17, 18, 41, 162

41-751-001............. 17, 18, 43, 162

41-752-001.....17, 18, 45, 122, 130,
162, 171

41-752-901.................... 17, 18, 45

41-753-001.................... 17, 18, 47

5

50-295122, 130, 136, 198

50-297 18, 49, 136

6

6U..1

Pickering Interfaces PXI VISA Driver - pipx40

248

A

alias... 4

Application Notes 136, 191

Attenuation ... 10, 13, 146, 147, 150,
153

Attenuator 4, 10, 73, 79, 82, 146,
147, 148, 150, 151, 153, 228, 231

auto-isolation94, 100, 196, 206,
210, 211

auto-loopthru94, 100, 196, 210

Axis 7, 85, 88, 94, 108, 113, 205,
217

B

Bank number 4

Basic... 3, 7, 64, 69, 79, 85, 88, 108,
113, 118, 151, 158, 194, 198,
224, 226, 228, 231, 233, 235,
237, 239, 241, 243

BATT..4, 45, 79, 162, 163, 164, 165,
166, 167, 169, 171, 228

Battery Simulator.. 4, 10, 18, 41, 43,
45, 47, 73, 79, 162, 163, 164,
165, 166, 167, 169, 171, 228

BBM..194

Boolean ...53, 73, 79, 87, 90, 93, 94,
98, 100, 107, 110, 111, 115, 120,
155, 171, 228

Break-before-make9, 194

BRIC ...183, 191, 192, 193, 205, 211

BRIC-M............................ 205, 215

C

Calibration10, 13, 19, 20, 22, 23, 27,
29, 41, 43, 45, 47, 49, 59, 66, 76,
121, 122, 124, 126, 128, 130,

132, 134, 136, 139, 145, 154,
187, 198, 200, 222

Channel 4, 7, 10, 13, 23, 27, 29, 32,
34, 35, 37, 39, 45, 49, 68, 82, 83,
84, 85, 87, 88, 90, 94, 98, 100,
104, 106, 110, 111, 113, 115,
120, 122, 130, 153, 171, 173,
187, 192, 193, 194, 206, 211,
215, 239, 241, 243

Closure limit ..10, 13, 63, 88, 90, 98,
187, 193, 243

Column..... 4, 7, 13, 73, 93, 98, 100,
107, 111

CompactPCI1

Co-ordinates...... 7, 93, 98, 107, 111

Count ..10, 64, 69, 73, 79, 148, 151,
158, 187, 224, 226, 228, 231, 233

Crosspoint...4, 7, 10, 88, 90, 92, 93,
94, 98, 100, 104, 107, 111, 183,
187, 192, 206, 210, 211

Current Sensing 18

D

Data Formats..... 7, 85, 88, 108, 113

Daughtercard......183, 192, 211, 215

Debounce.............................. 9, 71

Diagnostic10, 59, 63, 66, 69, 76, 94,
185, 187, 190, 196, 206, 211,
222, 226

Diagnostic Utility 185, 190

Digital .. 1, 4, 18, 19, 20, 23, 32, 34,
35, 37, 39, 41, 43, 73, 79, 90, 92,
194, 228

Digital output....... 19, 41, 43, 90, 92

Direct I/O driver................ 186, 187

DLLs...1

Index

249

Driver-specific 13

E

EEPROM13, 59, 66, 76, 121, 122,
124, 126, 130, 132, 134, 136,
145, 154, 222

Error Code10, 53, 55, 56, 57, 58, 59,
61, 64, 66, 68, 69, 71, 72, 73, 76,
79, 83, 84, 85, 87, 88, 90, 93, 94,
98, 100, 106, 107, 108, 110, 111,
113, 115, 118, 120, 122, 124,
126, 128, 130, 132, 134, 139,
142, 143, 147, 148, 150, 151,
153, 155, 156, 158, 160, 161,
163, 164, 165, 166, 167, 169,
171, 174, 175, 176, 177, 178,
180, 183, 219, 220, 221, 222,
224, 226, 228, 231, 233, 235,
237, 239, 241, 243

F

Factory calibration..... 124, 126, 132,
134

Firmware58, 64, 224

H

handle. 4, 53, 55, 56, 57, 58, 59, 61,
64, 66, 68, 69, 71, 72, 73, 76, 79,
83, 84, 85, 87, 88, 90, 93, 94, 98,
100, 106, 107, 108, 110, 111,
113, 115, 118, 120, 122, 124,
126, 128, 130, 132, 134, 139,
142, 143, 147, 148, 150, 151,
153, 155, 156, 158, 160, 161,
163, 164, 165, 166, 167, 169,
171, 174, 175, 176, 177, 178,
180, 205, 219, 220, 221, 222,
224, 226, 228, 231, 233, 235,
237, 239, 241, 243

Hardware.. 4, 13, 58, 59, 64, 66, 76,
162, 167, 171, 194, 222, 224

Help....................................1, 187

I

ID..................................... 10, 187

Info ..200

Initialise.............................10, 197

Input...4, 10, 18, 19, 32, 34, 35, 37,
39, 41, 43, 45, 47, 63, 72, 73, 79,
117, 118, 120, 187, 228, 235

Input-Output ...1, 18, 32, 34, 35, 37,
39, 162

inSubs 72

Integer ..7, 10, 59, 87, 93, 107, 110,
120, 121, 122, 130, 171, 187, 222

Isolation 94, 191, 192, 194, 196,
205, 206, 210, 211, 215, 217

IVI1, 3, 16

IVI Foundation1, 3, 16

L

LF4, 73, 79, 228

longwords7

M

Mask10, 13, 104, 106, 107, 108,
110, 111, 113, 115, 187, 241

Masking 104

Matrix... 4, 7, 10, 13, 68, 73, 79, 82,
85, 88, 90, 92, 93, 94, 98, 100,
104, 107, 108, 111, 113, 115,
187, 192, 193, 196, 205, 206,
211, 215, 228, 237, 239, 241, 243

MATRIXP...... 4, 13, 79, 94, 100, 228

MATRIXR...................4, 13, 79, 228

memory85, 108, 118, 121, 122, 124,
126, 130, 132, 134, 154, 198

Microsoft Windows®.....................1

Mode 4, 9, 10, 13, 71, 73, 76, 79,
143, 156, 171, 182, 183, 187,
192, 196, 228

Pickering Interfaces PXI VISA Driver - pipx40

250

Multiplexer 4, 20, 22, 23, 27, 41, 43,
47, 68, 73, 79, 88, 90, 92, 113,
115, 173, 194, 228, 241, 243

Multiprocessing................. 191, 197

Multithreading 191, 197

MUX.... 4, 13, 19, 20, 22, 23, 27, 32,
35, 37, 39, 41, 43, 47, 68, 79, 88,
90, 113, 115, 194, 228, 241, 243

MUXM 4, 79, 228

N

non-volatile..... 41, 43, 47, 121, 122,
124, 126, 130, 132, 134, 136,
145, 154, 198

O

OFF. 7, 104, 167, 169, 178, 180, 200

ON. 7, 104, 136, 167, 169, 178, 180,
193, 200

one-dimensional 7, 85, 88, 108, 113,
118, 235, 237, 239, 241, 243

Output ..4, 7, 10, 13, 18, 19, 20, 22,
23, 27, 29, 32, 34, 35, 37, 39, 41,
43, 45, 47, 49, 53, 57, 63, 66, 72,
73, 76, 79, 82, 83, 84, 85, 87, 88,
90, 104, 106, 110, 115, 122, 130,
136, 145, 153, 154, 155, 156,
160, 161, 162, 163, 164, 165,
166, 167, 169, 171, 173, 174,
175, 176, 177, 178, 180, 183,
187, 194, 197, 200, 228, 239, 243

outSubs.................................... 72

Overheating 68, 88, 90, 98, 183, 193

P

Pad 10, 79, 146, 148, 150, 151, 153,
228, 231

Panel.....................1, 185, 186, 190

parity 59, 66, 76, 222

Pattern ... 4, 7, 9, 10, 13, 82, 85, 88,
104, 108, 113, 117, 118, 136,
167, 169, 178, 180, 187, 198,
235, 237, 239, 241, 243

PCI................................ 1, 16, 190

PCI Industrial Computer
Manufacturers Group................ 16

PCI Special Interest Group........... 16

PCI-SIG 16

pi40iv ...3

PICMG 16

PILMon 187

Pilpxi 3, 186, 187, 190

pipx40 .. 1, 3, 17, 20, 22, 23, 27, 29,
32, 49, 55, 71, 122, 130, 183,
185, 187, 190, 192, 194, 196,
197, 218, 219

pipx40_attenGetAttenuation 10, 146,
147

pipx40_attenGetInfo10, 73, 146, 148

pipx40_attenGetPadValue....10, 146,
150, 153

pipx40_attenGetType.... 10, 79, 146,
151, 218, 231

pipx40_attenGetType_s10, 151, 218,
228, 231

pipx40_attenSetAttenuation.10, 146,
150, 153

pipx40_BATT_ALL_BATT_SUB_UNITS
...............163, 165, 167, 169, 171

pipx40_battGetCurrent.. 10, 45, 162,
165, 166

pipx40_battGetEnable... 10, 45, 162,
167, 169

Index

251

pipx40_battGetVoltage ..10, 45, 162,
163, 164

pipx40_battReadInterlockState ... 10,
45, 162, 171

pipx40_battSetCurrent ..10, 45, 162,
165, 166

pipx40_battSetEnable....10, 45, 162,
167, 169, 171

pipx40_battSetVoltage...10, 45, 162,
163, 164, 165

pipx40_CAL_STORE_FACTORY ...124,
126, 132, 134

pipx40_CAL_STORE_USER 124, 126,
132, 134

pipx40_clearCard 10, 82, 83, 94, 187

pipx40_clearMask 10, 32, 34, 35, 37,
39, 57, 104, 106, 187

pipx40_clearSub ..10, 20, 22, 23, 27,
29, 32, 34, 35, 37, 39, 41, 43, 45,
47, 49, 57, 82, 84, 88, 94, 143,
154, 173, 187, 243

pipx40_close10, 61

pipx40_ERROR_ATTR_UNSUPPORTE
D .. 13

pipx40_ERROR_BAD_ACTION 13

pipx40_ERROR_BAD_ARRAY........ 13

pipx40_ERROR_BAD_ATTEN 13

pipx40_ERROR_BAD_ATTR_CODE 13

pipx40_ERROR_BAD_CAL_INDEX . 13

pipx40_ERROR_BAD_CHANNEL.... 13

pipx40_ERROR_BAD_COLUMN 13

pipx40_ERROR_BAD_CURRENT.... 13

pipx40_ERROR_BAD_FP_FORMAT. 13

pipx40_ERROR_BAD_FUNC_CODE 13

pipx40_ERROR_BAD_MODE 13

pipx40_ERROR_BAD_POLE 13

pipx40_ERROR_BAD_POT............ 13

pipx40_ERROR_BAD_RANGE........ 13

pipx40_ERROR_BAD_REGISTER ... 13

pipx40_ERROR_BAD_RESISTANCE
......................................13, 143

pipx40_ERROR_BAD_ROW........... 13

pipx40_ERROR_BAD_SEGMENT.... 13

pipx40_ERROR_BAD_SESSION..... 13

pipx40_ERROR_BAD_STORE 13

pipx40_ERROR_BAD_SUB............ 13

pipx40_ERROR_BAD_SUBSWITCH 13

pipx40_ERROR_BAD_VOLTAGE 13

pipx40_ERROR_BUFFER_UNDERSIZE
.13, 219, 221, 222, 224, 226, 228,
231, 233, 235, 237, 239, 241, 243

pipx40_ERROR_CARD_DISABLED .13

pipx40_ERROR_CARD_INACCESSIBL
E... 13

pipx40_ERROR_CARD_TYPE......... 13

pipx40_ERROR_EEPROM_WRITE_TM
O .. 13

pipx40_ERROR_EXCESS_CLOSURE13

pipx40_ERROR_EXECUTION_FAIL 13,
167

pipx40_ERROR_FAILED_INIT 13

pipx40_ERROR_HARDWARE_FAULT
... 13

Pickering Interfaces PXI VISA Driver - pipx40

252

pipx40_ERROR_ILLEGAL_MASK... 13,
113, 115, 241

pipx40_ERROR_ILLEGAL_OP........ 13

pipx40_ERROR_MATRIXP_ILLEGAL13

pipx40_ERROR_MATRIXR_ILLEGAL13

pipx40_error_message ... 10, 53, 55,
56, 57, 58, 59, 61, 64, 66, 68, 69,
71, 72, 73, 76, 79, 83, 84, 85, 87,
88, 90, 93, 94, 98, 100, 106, 107,
108, 110, 111, 113, 115, 118,
120, 122, 124, 126, 128, 130,
132, 134, 139, 142, 143, 147,
148, 150, 151, 153, 155, 156,
158, 160, 161, 163, 164, 165,
166, 167, 169, 171, 174, 175,
176, 177, 178, 180, 183, 218,
219, 220, 221, 222, 224, 226,
228, 231, 233, 235, 237, 239,
241, 243

pipx40_ERROR_MISSING_CAPABILIT
Y .. 13

pipx40_ERROR_MISSING_CHANNEL
.. 13

pipx40_ERROR_MISSING_HARDWAR
E .. 13

pipx40_ERROR_MUX_ILLEGAL 13

pipx40_ERROR_NO_CAL_DATA 13

pipx40_ERROR_NO_INFO............ 13

pipx40_ERROR_OUTPUT_MASKED13,
104

pipx40_error_query.10, 56, 218, 220

pipx40_ERROR_READ_FAIL 13

pipx40_ERROR_SETTINGS_CONFLIC
T .. 13

pipx40_ERROR_STATE_CORRUPT 13,
94

pipx40_ERROR_SUB_TYPE 13

pipx40_ERROR_UNCALIBRATED ... 13

pipx40_ERROR_UNKNOWN 13

pipx40_ERROR_VISA_OP............. 13

pipx40_ERROR_VISA_VERSION.... 13

pipx40_ERROR_WRITE_FAIL 13

pipx40_errorMessage_s. 10, 55, 218,
219, 220, 221, 222, 224, 226,
228, 231, 233, 235, 237, 239,
241, 243

pipx40_errorQuery_s 10, 56, 218,
220

pipx40_FAULT_CALIBRATION_DUE
......................................59, 222

pipx40_FAULT_CARD_INACCESSIBLE
......................................59, 222

pipx40_FAULT_EEPROM_ERROR ..59,
222

pipx40_FAULT_HARDWARE...59, 222

pipx40_FAULT_UNCALIBRATED ... 59,
222

pipx40_FAULT_UNKNOWN59, 222

pipx40_FAULT_WRONG_DRIVER.. 59,
222

pipx40_getCardId.... 10, 63, 64, 187,
218, 224

pipx40_getCardId_s 10, 64, 218, 224

pipx40_getCardStatus. 9, 10, 63, 66,
69, 124, 187, 192, 194, 226

pipx40_getChannelPattern.7, 10, 20,
22, 23, 27, 29, 32, 34, 35, 37, 39,
41, 43, 45, 47, 49, 85, 136, 173,
187, 218, 239

pipx40_getChannelPattern_s..10, 85,
218, 239

Index

253

pipx40_getChannelState . 10, 22, 27,
32, 34, 35, 37, 39, 41, 43, 45, 47,
82, 87, 93, 94, 136, 187

pipx40_getClosureLimit... 10, 63, 68,
88, 90, 98, 187, 193, 243

pipx40_getCrosspointMask 7, 10, 98,
104, 107, 187

pipx40_getCrosspointState 7, 10, 92,
93, 98, 187

pipx40_getDiagnostic 10, 59, 63, 66,
69, 76, 187, 218, 226

pipx40_getDiagnostic_s .10, 69, 218,
222, 226

pipx40_getMaskPattern7, 10, 32, 34,
35, 37, 39, 104, 108, 187, 218,
237

pipx40_getMaskPattern_s ... 10, 104,
108, 218, 237

pipx40_getMaskState 10, 32, 34, 35,
37, 39, 104, 107, 110, 187

pipx40_getSettlingTime9, 10, 63, 71,
187

pipx40_getSubAttribute4, 10, 92, 94,
100, 210, 211, 215

pipx40_getSubCounts..4, 10, 63, 72,
187

pipx40_getSubInfo......4, 10, 63, 73,
148, 150, 187

pipx40_getSubStatus ..9, 10, 76, 94,
124, 154

pipx40_getSubType.....4, 10, 63, 79,
151, 187, 218, 228

pipx40_getSubType_s ...10, 79, 218,
228, 231

pipx40_init................ 4, 10, 53, 197

pipx40_MATRIXP_NOT_APPLICABLE
...100

pipx40_MATRIXP_RESTRICTIVE_X
... 100

pipx40_MATRIXP_RESTRICTIVE_Y
... 100

pipx40_MAX_ATTEN_TYPE_STR. 151,
231

pipx40_MAX_DIAG_LENGTH .69, 226

pipx40_MAX_DRIVER_REV_STR .. 58,
221

pipx40_MAX_ERR_STR.........55, 219

pipx40_MAX_ID_STR64, 224

pipx40_MAX_INSTR_REV_STR 58,
221

pipx40_MAX_PSU_TYPE_STR 158,
233

pipx40_MAX_SELF_TEST_STR..... 59,
222

pipx40_MAX_SUB_TYPE_STR 79, 228

pipx40_MODE_DEFAULT............ 183

pipx40_MODE_NO_WAIT9, 145, 183,
194

pipx40_MODE_UNLIMITED.. 183, 193

pipx40_operateSwitch..... 10, 92, 94,
100, 196, 205, 206, 210, 211

pipx40_PSU_CAP_CURRENT_MODE_
SENSE 156

pipx40_PSU_CAP_OUTPUT_CONTROL
... 156

pipx40_PSU_CAP_OUTPUT_SENSE
... 156

pipx40_PSU_CAP_PROG_CURRENT
... 156

pipx40_PSU_CAP_PROG_VOLTAGE
.................................... 156, 161

Pickering Interfaces PXI VISA Driver - pipx40

254

pipx40_psuEnable .10, 154, 155, 156

pipx40_psuGetInfo.10, 73, 154, 156,
161

pipx40_psuGetType10, 79, 154, 158,
218, 233

pipx40_psuGetType_s . 10, 158, 218,
228, 233

pipx40_psuGetVoltage . 10, 154, 160,
161

pipx40_psuSetVoltage . 10, 154, 156,
161

pipx40_readCalibration ..10, 45, 121,
122, 136, 145, 154, 187, 198

pipx40_readCalibrationDate...10, 20,
22, 23, 27, 29, 49, 121, 124, 136

pipx40_readCalibrationFP 10, 20, 22,
23, 27, 29, 49, 121, 126, 128

pipx40_readInputPattern .. 7, 10, 32,
34, 35, 37, 39, 41, 43, 45, 47,
117, 118, 187, 218, 235

pipx40_readInputPattern_s . 10, 118,
218, 235

pipx40_readInputState ... 10, 41, 43,
45, 47, 117, 120, 187

pipx40_RES_MODE_SET143

pipx40_reset10, 57

pipx40_resGetInfo10, 20, 22, 23, 27,
29, 49, 136, 139, 142, 143

pipx40_resGetResistance 10, 20, 22,
23, 27, 29, 49, 136, 142, 143

pipx40_resSetResistance. 10, 20, 22,
23, 27, 29, 49, 126, 128, 132,
134, 136, 139, 143

pipx40_revision_query...10, 58, 218,
221

pipx40_revisionQuery_s 10, 58, 218,
221

pipx40_self_test...... 10, 59, 69, 218,
222, 226

pipx40_selfTest_s.. 10, 59, 218, 222,
226

pipx40_setCalibrationPoint.....10, 20,
22, 23, 27, 29, 49, 121, 128

pipx40_setChannelPattern ...7, 9, 10,
20, 22, 23, 27, 29, 32, 34, 35, 37,
39, 41, 43, 45, 47, 49, 82, 85, 88,
94, 104, 106, 108, 111, 113, 115,
118, 136, 145, 150, 153, 187,
205, 206, 211, 218, 241, 243

pipx40_setChannelPattern_s 88, 104,
106, 111, 113, 115, 218, 235,
237, 239, 241, 243

pipx40_setChannelState....7, 10, 20,
22, 23, 27, 32, 34, 35, 37, 39, 41,
43, 45, 47, 82, 88, 90, 94, 98,
104, 106, 111, 113, 115, 136,
150, 153, 173, 187, 205, 206,
211, 241, 243

pipx40_setCrosspointMask.7, 10, 98,
104, 111, 187

pipx40_setCrosspointState 7, 10, 92,
98, 104, 106, 111, 113, 115, 187,
205, 206, 211, 241

pipx40_setDriverMode 9, 10, 68, 71,
88, 90, 98, 182, 183, 187, 192,
193, 194, 197, 243

pipx40_setMaskPattern 7, 10, 32, 34,
35, 37, 39, 104, 113, 187, 218,
241

pipx40_setMaskPattern_s10, 104,
113, 218, 241

pipx40_setMaskState.10, 32, 34, 35,
37, 39, 104, 111, 115, 187

pipx40_STAT_BUSY9, 66, 76, 194

pipx40_STAT_CALIBRATION_DUE 66,
76, 124

Index

255

pipx40_STAT_CARD_INACCESSIBLE
.......................................66, 76

pipx40_STAT_CORRUPTED76, 94

pipx40_STAT_DISABLED.66, 76, 192

pipx40_STAT_EEPROM_ERR ...66, 76

pipx40_STAT_HW_FAULT 66, 76, 192

pipx40_STAT_NO_CARD66, 76

pipx40_STAT_NO_SUB 76

pipx40_STAT_OK66, 76

pipx40_STAT_PARITY_ERROR.66, 76

pipx40_STAT_PSU_CURRENT_LIMIT
.. 76

pipx40_STAT_PSU_INHIBITED..... 76

pipx40_STAT_PSU_SHUTDOWN ... 76

pipx40_STAT_UNCALIBRATED 66, 76

pipx40_STAT_WRONG_DRIVER... 66,
76

pipx40_SUB_ATTR_CHANNEL_SUBS
WITCHES .100, 206, 210, 211, 215

pipx40_SUB_ATTR_MATRIXP_TOPOL
OGY100

pipx40_SUB_ATTR_NUM_X_SEGMEN
TS...........100, 206, 210, 211, 215

pipx40_SUB_ATTR_NUM_Y_SEGMEN
TS...........100, 206, 210, 211, 215

pipx40_SUB_ATTR_X_ISO_SUBSWIT
CHES.......100, 206, 210, 211, 215

pipx40_SUB_ATTR_X_LOOPTHRU_SU
BSWITCHES 100, 210

pipx40_SUB_ATTR_X_SEGMENT01_S
IZE100, 206, 210, 211, 215

pipx40_SUB_ATTR_X_SEGMENT02_S
IZE100, 206, 210, 211, 215

pipx40_SUB_ATTR_X_SEGMENT03_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT04_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT05_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT06_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT07_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT08_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT09_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT10_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT11_S
IZE...................................... 100

pipx40_SUB_ATTR_X_SEGMENT12_S
IZE...................................... 100

pipx40_SUB_ATTR_Y_ISO_SUBSWIT
CHES100, 206, 210, 211, 215

pipx40_SUB_ATTR_Y_LOOPTHRU_SU
BSWITCHES................... 100, 210

pipx40_SUB_ATTR_Y_SEGMENT01_S
IZE..........100, 206, 210, 211, 215

pipx40_SUB_ATTR_Y_SEGMENT02_S
IZE........................100, 206, 210

pipx40_SW_ACT_CLOSE.............. 94

pipx40_SW_ACT_NONE............... 94

pipx40_SW_ACT_OPEN 94

pipx40_SW_FUNC_CHANNEL94, 206,
211

pipx40_SW_FUNC_X_BIFURCATION
... 94

Pickering Interfaces PXI VISA Driver - pipx40

256

pipx40_SW_FUNC_X_ISO..... 94, 206

pipx40_SW_FUNC_X_LOOPTHRU.. 94

pipx40_SW_FUNC_Y_BIFURCATION
.. 94

pipx40_SW_FUNC_Y_ISO.... 94, 206,
211

pipx40_SW_FUNC_Y_LOOPTHRU.. 94

pipx40_TYPE_ATTEN 4, 73, 148

pipx40_TYPE_BATT4, 73

pipx40_TYPE_DIG4, 73

pipx40_TYPE_MAT...................4, 73

pipx40_TYPE_MATP4, 73

pipx40_TYPE_MATR.................4, 73

pipx40_TYPE_MUX4, 73

pipx40_TYPE_MUXM................4, 73

pipx40_TYPE_PSUDC....... 4, 73, 156

pipx40_TYPE_RES4, 73

pipx40_TYPE_SW....................4, 73

pipx40_TYPE_VSOURCE4, 73

pipx40_VSOURCE_ALL_VSOURCE_SU
B_UNITS...............................180

pipx40_vsourceGetEnable ... 10, 173,
178, 180

pipx40_vsourceGetRange.... 10, 173,
174, 175

pipx40_vsourceGetVoltage .. 10, 173,
176, 177

pipx40_vsourceSetEnable.... 10, 173,
178, 180

pipx40_vsourceSetRange 10, 173,
174, 175

pipx40_vsourceSetVoltage...10, 173,
176, 177

pipx40_writeCalibration. 10, 45, 121,
130, 136, 145, 154, 187, 198

pipx40_writeCalibrationDate ..10, 20,
22, 23, 27, 29, 49, 121, 132

pipx40_writeCalibrationFP 10, 20, 22,
23, 27, 29, 49, 121, 128, 134

PipxDiag 190

Potentiometer 145

Power supply4, 10, 73, 79, 154, 155,
156, 158, 160, 161, 192, 194,
228, 233

Processor speed 194

Programmable Potentiometer 145

Programmable Resistor 4, 10, 73, 79,
122, 130, 136, 139, 142, 143,
145, 191, 198, 200, 228

PXI............ 1, 3, 4, 16, 41, 187, 190

PXI Systems Alliance 16

PXISA....................................... 16

R

Relay. 1, 19, 94, 192, 193, 194, 198,
200, 215

RES.....4, 20, 22, 23, 27, 29, 49, 79,
145, 228

Resistor 4, 10, 18, 20, 22, 29, 49,
121, 122, 130, 136, 139, 198, 200

Resource Name...................... 4, 53

Revision code64, 224

Revision Query........................... 10

RF. 4, 10, 73, 79, 82, 146, 148, 151,
196, 228, 231

Index

257

Row .. 4, 7, 13, 73, 93, 98, 100, 107,
111, 215

rsrcName.................................. 53

S

Segmented matrix94, 100, 191, 205,
206, 210, 211, 215

Serial number............................ 64

Status10, 13, 43, 47, 56, 59, 63, 66,
76, 154, 169, 187, 220, 222

subType 73, 79, 148, 151, 158, 228,
231, 233

subUnit....68, 71, 73, 76, 79, 84, 85,
87, 88, 90, 93, 94, 98, 100, 106,
107, 108, 110, 111, 113, 115,
118, 120, 122, 124, 126, 128,
130, 132, 134, 139, 142, 143,
147, 148, 150, 151, 153, 155,
156, 158, 160, 161, 163, 164,
165, 166, 167, 169, 171, 174,
175, 176, 177, 178, 180, 228,
231, 233, 235, 237, 239, 241, 243

Sub-unit ..4, 7, 9, 10, 13, 19, 20, 22,
23, 27, 29, 32, 34, 35, 37, 39, 41,
43, 45, 47, 49, 57, 59, 63, 66, 68,
71, 72, 73, 76, 79, 82, 83, 84, 85,
87, 88, 90, 92, 93, 94, 98, 100,
104, 106, 107, 108, 110, 111,
113, 115, 117, 118, 120, 121,
122, 124, 126, 128, 130, 132,
134, 136, 139, 142, 143, 145,
146, 147, 148, 150, 151, 153,
154, 155, 156, 158, 160, 161,
162, 163, 164, 165, 166, 167,
169, 171, 173, 174, 175, 176,
177, 178, 180, 187, 193, 205,
206, 210, 211, 215, 222, 228,
231, 233, 235, 237, 239, 241, 243

SWITCH.............4, 27, 79, 215, 228

Switch mask...... 104, 106, 108, 113,
237, 241

System 40 1

System 411, 17

System 45...................................1

System 50...................................1

T

Terminal monitor........185, 187, 190

Test . 1, 59, 185, 186, 190, 192, 222

Thermocouple Simulator. 10, 18, 173

Type code73, 148, 156

U

Unsegmented matrix ...94, 100, 191,
217

User calibration...124, 126, 132, 134

V

VI_FALSE 53

VI_NULL 53

VI_SUCCESS 13

VI_TRUE 53

VI_WARN_NSUP_ERROR_QUERY .56,
220

Virtual Instrument Software
Architecture.......................... 1, 3

VISA 1, 3, 4, 10, 13, 16, 66, 76, 187,
190, 218

Voltage Source...4, 73, 79, 174, 175,
176, 177, 178, 180, 228

VPP ..1

VSOURCE.4, 79, 173, 174, 175, 176,
177, 178, 180, 228

VXIplug&play........................... 1, 3

W

WIN32..1

258

Pickering Interfaces PXI
Direct I/O Driver - Pilpxi

i

Table Of Contents
Pickering Interfaces PXI Direct I/O Driver - Pilpxi..1

Cards with Special Features .. 16

Language Support ... 52

Visual Basic ... 53

Visual C++.. 177

Borland C++.. 297

Utility Programs .. 300

Application Notes .. 307

Segmented Matrix .. 322

Secure Functions... 335

Visual Basic Secure Functions... 336

Visual C++ Secure Functions.. 357

Index ... 373

1

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

This document describes programming support and diagnostic utilities for
Pickering Interfaces PXI cards using the Pilpxi Direct I/O (kernel) driver, which is
applicable to the following families of switching cards:

• System 40 (3U PXI)
• System 45 (6U PXI)
• System 50 (PCI)

Certain System 41 (PXI Instrument) cards are also supported - for models see
the System 41 Support List.

System 40/45/50 cards offer a wide range of Relay Switching, Digital Input-
Output and other specialised functions in PXI, CompactPCI and PCI formats.

Version date: 27 Feb 2025

Copyright © Pickering Interfaces Ltd. 2025

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

2

Pilpxi Direct I/O Driver Basics

The Pilpxi Direct I/O driver is a 'kernel' driver, and works independently of
indirected I/O schemes such as VISA (Virtual Instrument Software Architecture).
The driver is implemented in Dynamic Link Library Pilpxi.dll, together with
library/header files for each supported programming environment.

Alternative drivers

If a VISA-based solution is preferred the pipx40 driver is available, offering
broadly similar functionality to Pilpxi.

A driver compliant with the IVI (Interchangeable Virtual Instruments) standard,
pi40iv, is also available.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

3

Accessing Cards

Opening Cards

The Pilpxi driver supports two mechanisms for opening and closing Pickering
cards - see function reference for Visual Basic / Visual C++.

Card Numbers

When opened by PIL_OpenCards, each Pickering card is accessed using a logical
card number, starting from 1. Note that the logical number associated with any
card may change if the number of installed switch cards is changed, or if cards
are moved to different slot positions. Function PIL_CardLoc can be used to obtain
the logical bus/slot location associated with a logical card number, and
PIL_CardId to discover the card's identity.

When opened by PIL_OpenSpecifiedCard, the logical card number associated with
a card is the value returned in the CardNum argument of the
PIL_OpenSpecifiedCard call that opened it. PIL_CardId obtains the card's identity.

Sub-units

All Pickering cards contain one or more independently addressable functional
blocks, or sub-units. Sub-unit numbers begin at 1, and separate sequences are
used for input and output functions. This number is used in function calls to
access the appropriate block. Generally, sub-unit numbers correspond directly to
the bank numbers specified in hardware documentation.

Sub-unit examples:

Model Configuration INPUT
sub-unit
#1

OUTPUT
sub-unit
#1

OUTPUT
sub-unit
#2

OUTPUT
sub-unit
#3

40-110-
021

16 SPDT switches None 16 SPDT
switches

None None

40-290-
121

Dual
Programmable
resistors + 16
SPDT switches

None Resistor
#1

Resistor
#2

16 SPDT
switches

40-490-
001

Digital I/O 16-
channel
inputs

32-
channel
outputs

None None

40-511-
021

Dual 12 x 4
matrix

None 12 x 4
matrix #1

12 x 4
matrix #2

None

Sub-unit characteristics

The numbers of input and output sub-units in a card can be obtained using
function PIL_EnumerateSubs.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

4

Sub-unit type and dimensions can be obtained using functions:

PIL_SubType - as a text string

PIL_SubInfo - in numerical format

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

5

PIL_SubType
type desc.

PIL_SubInfo
type value

Characteristics

INPUT 1 Digital inputs.

SWITCH 1 - TYPE_SW Uncommitted switches. Switches can be
selected in
any arbitrary pattern.

MUX 2 - TYPE_MUX Multiplexer, single channel. Only one
channel can be
selected at any time.

MUXM 3 - TYPE_MUXM Multiplexer, multi channel. Any number
of channels can
be selected simultaneously.

MATRIX 4 - TYPE_MAT Matrix, LF. Multiple crosspoints may be
closed on any
row or column, though there may be a
limit on the
total number that can be closed
simultaneously.
Some matrices intended for RF use are
also
characterised as this type, though
closure of multiple
crosspoints on a row or column will
inevitably
compromise RF performance.

MATRIXR 5 - TYPE_MATR Matrix, RF. A matrix intended for RF
use, generally
permitting the closure of only one
crosspoint on each
row and column.

DIGITAL 6 - TYPE_DIG Digital outputs. Outputs can usually be
energised in
any arbitrary pattern; however in some
cases
operations may be restricted,
particularly in DIGITAL
sub-units of cards described under
Cards with Special Features.

RES 7 - TYPE_RES Programmable resistor.

ATTEN 8 - TYPE_ATTEN Programmable RF attenuator.

PSUDC 9 - TYPE_PSUDC DC power supply.

BATT 10 - TYPE_BATT Battery Simulator.

VSOURCE 11 -
TYPE_VSOURCE

Programmable voltage source.

MATRIXP 12 - TYPE_MATP Matrix with restricted modes of
operation, for example
allowing the connection of only one row
(Y)
crosspoint on any column (X).
Information on its
specific characteristics can be
obtained using
function PIL_SubAttribute (see ref. VB
/ VC++).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

6

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

7

Data Formats

Two basic data formats are used by the driver.

Bit Number

The individual output to be affected by functions such as PIL_OpBit is specified by
a bit number value.

For any sub-unit type other than a matrix, this unity-based number directly
specifies the affected output channel.

For a matrix sub-unit, the bit number of a crosspoint is determined by folding on
the row-axis. For example in a MATRIX(12X8), having 12 columns and 8 rows, bit
number 13 represents the crosspoint (row 2, column 1):

Note: matrix operation

More straightforward matrix operation using row/column co-ordinates is provided
by functions:

PIL_OpCrosspoint

PIL_ViewCrosspoint

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

8

PIL_MaskCrosspoint

PIL_ViewMaskCrosspoint

Data Array

Functions affecting all of a sub-unit's channels utilise a one-dimensional data
array (or vector) of 32-bit (unsigned) longwords. In the array, each bit represents
the state of one output channel: '0' for OFF, '1' for ON. The least significant bit in
the base element of the array corresponds to channel 1, with more significant bits
corresponding to higher-numbered channels.

The minimum number of longwords needed to represent a sub-unit is the integer
part of:

((rows * columns) + 31) / 32

For a matrix sub-unit, bit assignments follow the same pattern as that used to
determine bit numbers. Hence for the matrix example above:

Element 0 bit 0 = row 1 column 1

Element 0 bit 11 = row 1 column 12

Element 0 bit 12 = row 2 column 1

Element 2 bit 31 = row 8 column 12

This format is employed by functions:

PIL_WriteSub

PIL_ViewSub

PIL_WriteSubArray

PIL_ViewSubArray

PIL_WriteMask

PIL_ViewMask

PIL_WriteMaskArray

PIL_ViewMaskArray

PIL_ReadSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

9

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

10

Timing Issues

Default mode

In the default mode of operation, driver functions incorporate appropriate delay
periods to guarantee safe sequencing of internal events and that switch states
will have stabilised prior to returning (fully debounced operation).

Break-before-make action is enforced for all operations, including pattern based
functions such as PIL_WriteSub.

No-wait mode

If the option MODE_NO_WAIT is invoked using PIL_SetMode all sequencing and
settling delays are disabled. This allows other operations to proceed while
switches are transitioning - the debounce period for a microwave or high power
switch may be 15 milliseconds or more. A sub-unit's debounce period can be
discovered using PIL_SettleTime.

It should be borne in mind that for some models the elimination of internal
sequencing delays could result in transient illicit states.

When MODE_NO_WAIT is set stabilisation of a sub-unit's switches can be
determined by polling the result of PIL_SubStatus; or stabilisation of all switches
on a card by polling with PIL_Status. In either case stabilisation is indicated by
the STAT_BUSY bit being clear.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

11

Error Codes

Many of the Pilpxi.dll functions return a numeric error code that indicates success
or failure of the function call.

A string describing an error code can be obtained using PIL_ErrorMessage - see
function reference for Visual Basic / Visual C++.

Error codes are as follows:

0 NO_ERR Success

1 ER_NO_CARD No card present with specified number

2 ER_NO_INFO Card information unobtainable - hardware
problem

3 ER_CARD_DISABLED Card disabled - hardware problem

4 ER_BAD_SUB Card has no sub-unit with specified number

5 ER_BAD_BIT Sub-unit has no bit with specified number

6 ER_NO_CAL_DATA Sub-unit has no calibration data to
write/read

7 ER_BAD_ARRAY Array type, size or shape is incorrect

8 ER_MUX_ILLEGAL Non-zero write data is illegal for MUX sub-
unit

9 ER_EXCESS_CLOSURE Sub-unit closure limit exceeded

10 ER_ILLEGAL_MASK One or more of the specified channels
cannot be masked

11 ER_OUTPUT_MASKED Cannot activate an output that is masked

12 ER_BAD_LOCATION Cannot open a Pickering card at the
specified location

13 ER_READ_FAIL Failed read from hardware

14 ER_WRITE_FAIL Failed write to hardware

15 ER_DRIVER_OP Hardware driver failure

16 ER_DRIVER_VERSION Incompatible hardware driver version

17 ER_SUB_TYPE Function call incompatible with sub-unit
type or capabilities

18 ER_BAD_ROW Matrix row value out of range

19 ER_BAD_COLUMN Matrix column value out of range

20 ER_BAD_ATTEN Attenuation value out of range

21 ER_BAD_VOLTAGE Voltage value out of range

22 ER_BAD_CAL_INDEX Calibration reference out of range

23 ER_BAD_SEGMENT Segment number out of range

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

12

24 ER_BAD_FUNC_CODE Function code value out of range

25 ER_BAD_SUBSWITCH Subswitch value out of range

26 ER_BAD_ACTION Action code out of range

27 ER_STATE_CORRUPT Cannot execute due to corrupt sub-unit
state

28 ER_BAD_ATTR_CODE Unrecognised attribute code

29 ER_EEPROM_WRITE_TMO Timeout writing to EEPROM

30 ER_ILLEGAL_OP Operation is illegal in the sub-unit's
current state

31 ER_BAD_POT Unrecognised pot number requested

32 ER_MATRIXR_ILLEGAL Invalid write pattern for MATRIXR sub-unit

33 ER_MISSING_CHANNEL Attempted operation on non-existent channel

34 ER_CARD_INACCESSIBLE Card cannot be accessed
(failed/removed/unpowered)

35 ER_BAD_FP_FORMAT Unsupported internal floating-point format
(internal error)

36 ER_UNCALIBRATED Sub-unit is not calibrated

37 ER_BAD_RESISTANCE Unobtainable resistance value

38 ER_BAD_STORE Invalid calibration store number

39 ER_BAD_MODE Invalid mode value

40 ER_SETTINGS_CONFLICT Conflicting device settings

41 ER_CARD_TYPE Function call incompatible with card type
or capabilities

42 ER_BAD_POLE Switch pole value out of range

43 ER_MISSING_CAPABILITY Attempted to activate a non-existent
capability

44 ER_MISSING_HARDWARE Action requires hardware that is not
present

45 ER_HARDWARE_FAULT Faulty hardware

46 ER_EXECUTION_FAIL Failed to execute (e.g. blocked by a
hardware condition)

47 ER_BAD_CURRENT Current value out of range

48 ER_BAD_RANGE Illegal range value

49 ER_ATTR_UNSUPPORTED Attribute not supported

50 ER_BAD_REGISTER Register number out of range

51 ER_MATRIXP_ILLEGAL Invalid channel closure or write pattern
for MATRIXP sub-unit

52 ER_BUFFER_UNDERSIZE Data buffer too small

For Visual Basic, corresponding global constants are provided in Pilpxi.bas.

For Visual C++, corresponding enumerated constants are provided in Pilpxi.h.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

13

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

14

Contact Pickering

For further assistance, please contact:

Pickering Interfaces Ltd.
Stephenson Road
Clacton-on-Sea

Essex CO15 4NL
UK

Telephone: 44 (0)1255 687900

Fax: 44 (0)1255 425349

WWW: http://www.pickeringtest.com

Email (sales): sales@pickeringtest.com

Email (technical support): support@pickeringtest.com

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

15

System 41 Support List

The following System 41 models are supported by Pilpxi driver:

• 41-180-021
• 41-180-022
• 41-181-021
• 41-181-022
• 41-182-003
• 41-660-001
• 41-661-001
• 41-720
• 41-735-001
• 41-750-001
• 41-751-001
• 41-752-001
• 41-752-901
• 41-753-001

If your System 41 card does not appear in this list support for it may have been
added subsequent to the above release; or it may be supported instead by its
own card-specific driver. In either case the appropriate driver version can be
downloaded from our website http://www.pickeringtest.com.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

16

Cards with Special Features

Cards with Special Features

Certain cards support special features that are accessed using Input, General
Purpose Output or other specific functions. The nature of these features and their
methods of operation by the software driver are model-specific:

• 40-170-101, 40-170-102 Current Sensing Switch Cards
• 40-260-001 Precision Resistor
• 40-261 Precision Resistor
• 40-262 RTD Simulator
• 40-265 Strain Gauge Simulator
• 40-297 Precision Resistor
• 40-412-001 Digital Input-Output
• 40-412-101 Digital Input-Output
• 40-413-001 Digital Input-Output
• 40-413-002 Digital Input-Output
• 40-413-003 Digital Input-Output
• 41-750-001 Battery Simulator
• 41-751-001 Battery Simulator
• 41-752-001 and 41-752-901 Battery Simulator
• 41-753-001 Battery Simulator
• 50-297 Precision Resistor

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

17

40-170-101/102 Current Sensing Switch Card

The 40-170-101 and 40-170-102 cards contain current sensing circuitry to
monitor the current flowing through the main relay contacts. A voltage
proportional to the current flowing through the contacts is delivered to the
monitor output on the card.

The card contains the following sub-units:

Output Sub-
Units

Function

1 2 bit switch, 1 for each relay
2 2-way MUX, controls monitor of relay 1 or relay 2 or

cascade if neither relay is selected
3 * 16-bit digital output, used to control current

monitor circuit 1
4 * 16-bit digital output, used to control current

monitor circuit 2

Input Sub-
Units

Function

1 * 8-bit port to read result of control commands on
circuit 1

2 * 8-bit port to read result of control commands on
circuit 2

3 * 8-bit port to read RDAC(0) on circuit 1
4 * 8-bit port to read RDAC(1) on circuit 1
5 * 8-bit port to read RDAC(0) on circuit 2
6 * 8-bit port to read RDAC(1) on circuit 2

The sub-units marked with an asterisk (*) are used for calibration of the current
monitoring circuits and are not required for normal operation, refer to the 40-
170-101 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

18

40-260-001 Precision Resistor

The 40-260-001 Precision Resistor card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Units

Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(28) Precision resistor 1
2: RES(28) Precision resistor 2
3: RES(28) Precision resistor 3

Output Sub-
Unit

Applicable functions
PIL_OpBit
PIL_ViewSub
PIL_ClearSub

4: MUX(4) Common reference
multiplexer

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-
Units

Applicable
functions
PIL_SetCalPoint
PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

Applicable functions
PIL_WriteSub
PIL_ViewSub

1:
RES(28)

Precision resistor
1

PR1 switched resistance elements

2:
RES(28)

Precision resistor
2

PR2 switched resistance elements

3:
RES(28)

Precision resistor
3

PR3 switched resistance elements

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewSub
PIL_ClearSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

19

5: MUX(9) DMM multiplexer

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub

6: DIGITAL(32) PR1 digital pot element
7: DIGITAL(32) PR2 digital pot element
8: DIGITAL(32) PR3 digital pot element

Refer to the 40-260-001 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

20

40-261 Precision Resistor

The 40-261-001 and 40-261-002 Precision Resistor cards contain an array of sub-
units for control and calibration.

Functions for normal operation

Output Sub-Units Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(38) Precision resistor 1
2: RES(38) Precision resistor 2

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output Sub-
Units

Applicable
functions
PIL_SetCalPoint
PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

Applicable functions
PIL_WriteSub
PIL_ViewSub

1: RES(38) Precision resistor
1

PR1 switched resistance
elements

2: RES(38) Precision resistor
2

PR2 switched resistance
elements

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewSub
PIL_ClearSub

3: MUX(6) DMM multiplexer

Refer to the 40-261 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

21

40-262 RTD Simulator

Model 40-262 RTD Simulator cards contain an array of sub-units for control and
calibration.

Models 40-262-001, 40-262-002 (18 channels): functions for normal
operation

Output Sub-Units Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(13) Simulator channel 1
2: RES(13) Simulator channel 2
3: RES(13) Simulator channel 3
4: RES(13) Simulator channel 4
5: RES(13) Simulator channel 5
6: RES(13) Simulator channel 6
7: RES(13) Simulator channel 7
8: RES(13) Simulator channel 8
9: RES(13) Simulator channel 9
10: RES(13) Simulator channel 10
11: RES(13) Simulator channel 11
12: RES(13) Simulator channel 12
13: RES(13) Simulator channel 13
14: RES(13) Simulator channel 14
15: RES(13) Simulator channel 15
16: RES(13) Simulator channel 16
17: RES(13) Simulator channel 17
18: RES(13) Simulator channel 18

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewSub
PIL_ClearSub

19: MUX(4) Common reference multiplexer

Models 40-262-001, 40-262-002 (18 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output Applicable Applicable functions

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

22

Sub-Units functions
PIL_SetCalPoint
PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

PIL_WriteSub
PIL_ViewSub

1:
RES(13)

Simulator channel
1

Sim chan 1 switched resistance
elements

2:
RES(13)

Simulator channel
2

Sim chan 2 switched resistance
elements

3:
RES(13)

Simulator channel
3

Sim chan 3 switched resistance
elements

4:
RES(13)

Simulator channel
4

Sim chan 4 switched resistance
elements

5:
RES(13)

Simulator channel
5

Sim chan 5 switched resistance
elements

6:
RES(13)

Simulator channel
6

Sim chan 6 switched resistance
elements

7:
RES(13)

Simulator channel
7

Sim chan 7 switched resistance
elements

8:
RES(13)

Simulator channel
8

Sim chan 8 switched resistance
elements

9:
RES(13)

Simulator channel
9

Sim chan 9 switched resistance
elements

10:
RES(13)

Simulator channel
10

Sim chan 10 switched resistance
elements

11:
RES(13)

Simulator channel
11

Sim chan 11 switched resistance
elements

12:
RES(13)

Simulator channel
12

Sim chan 12 switched resistance
elements

13:
RES(13)

Simulator channel
13

Sim chan 13 switched resistance
elements

14:
RES(13)

Simulator channel
14

Sim chan 14 switched resistance
elements

15:
RES(13)

Simulator channel
15

Sim chan 15 switched resistance
elements

16:
RES(13)

Simulator channel
16

Sim chan 16 switched resistance
elements

17:
RES(13)

Simulator channel
17

Sim chan 17 switched resistance
elements

18:
RES(13)

Simulator channel
18

Sim chan 18 switched resistance
elements

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewSub
PIL_ClearSub

20: MUX(54) DMM multiplexer

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub

21: DIGITAL(32) Sim chan 1 digital pot element
22: DIGITAL(32) Sim chan 2 digital pot element

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

23

23: DIGITAL(32) Sim chan 3 digital pot element
24: DIGITAL(32) Sim chan 4 digital pot element
25: DIGITAL(32) Sim chan 5 digital pot element
26: DIGITAL(32) Sim chan 6 digital pot element
27: DIGITAL(32) Sim chan 7 digital pot element
28: DIGITAL(32) Sim chan 8 digital pot element
29: DIGITAL(32) Sim chan 9 digital pot element
30: DIGITAL(32) Sim chan 10 digital pot element
31: DIGITAL(32) Sim chan 11 digital pot element
33: DIGITAL(32) Sim chan 12 digital pot element
33: DIGITAL(32) Sim chan 13 digital pot element
34: DIGITAL(32) Sim chan 14 digital pot element
35: DIGITAL(32) Sim chan 15 digital pot element
36: DIGITAL(32) Sim chan 16 digital pot element
37: DIGITAL(32) Sim chan 17 digital pot element
38: DIGITAL(32) Sim chan 18 digital pot element

Models 40-262-101, 40-262-102 (6 channels): functions for normal
operation

Output Sub-Units Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(13) Simulator channel 1
2: RES(13) Simulator channel 2
3: RES(13) Simulator channel 3
4: RES(13) Simulator channel 4
5: RES(13) Simulator channel 5
6: RES(13) Simulator channel 6

Output Sub-Units Applicable functions
PIL_OpBit
PIL_ViewSub
PIL_ClearSub

7: MUX(4) Common reference multiplexer

Models 40-262-101, 40-262-102 (6 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable
functions
PIL_SetCalPoint
PIL ReadCalFP

Applicable functions
PIL_WriteSub
PIL_ViewSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

24

PIL_WriteCalFP
PIL_WriteCalDate

1:
RES(13)

Simulator channel
1

Sim chan 1 switched resistance
elements

2:
RES(13)

Simulator channel
2

Sim chan 2 switched resistance
elements

3:
RES(13)

Simulator channel
3

Sim chan 3 switched resistance
elements

4:
RES(13)

Simulator channel
4

Sim chan 4 switched resistance
elements

5:
RES(13)

Simulator channel
5

Sim chan 5 switched resistance
elements

6:
RES(13)

Simulator channel
6

Sim chan 6 switched resistance
elements

Output Sub-Units Applicable functions
PIL_OpBit
PIL_ViewSub
PIL_ClearSub

8: MUX(18) DMM multiplexer

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub

9: DIGITAL(32) Sim chan 1 digital pot element
10: DIGITAL(32) Sim chan 2 digital pot element
11: DIGITAL(32) Sim chan 3 digital pot element
12: DIGITAL(32) Sim chan 4 digital pot element
13: DIGITAL(32) Sim chan 5 digital pot element
14: DIGITAL(32) Sim chan 6 digital pot element

Refer to the 40-262 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

25

40-265 Strain Gauge Simulator

Strain Gauge Simulator models 40-265-006 and 40-265-016 contain an array of
sub-units for control and calibration.

Functions for normal operation

Output Sub-Units Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ReadCalDate

1: RES(64) Simulator channel 1
2: RES(64) Simulator channel 2
3: RES(64) Simulator channel 3
4: RES(64) Simulator channel 4
5: RES(64) Simulator channel 5
6: RES(64) Simulator channel 6

Output Sub-Units Applicable functions
PIL_OpBit
PIL_WriteSub
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

7: SWITCH(4) Simulator channel 1 auxiliary switches
8: SWITCH(4) Simulator channel 2 auxiliary switches
9: SWITCH(4) Simulator channel 3 auxiliary switches
10: SWITCH(4) Simulator channel 4 auxiliary switches
11: SWITCH(4) Simulator channel 5 auxiliary switches
12: SWITCH(4) Simulator channel 6 auxiliary switches

A simulator channel's null-point resistance can be obtained using function:

• PIL_ResInfo (in its RefRes argument)

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable
functions
PIL SetCalPoint

Applicable functions
PIL_WriteSub
PIL_ViewSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

26

PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

1:
RES(64)

Simulator channel
1

Simulator channel 1 resistance
elements

2:
RES(64)

Simulator channel
2

Simulator channel 2 resistance
elements

3:
RES(64)

Simulator channel
3

Simulator channel 3 resistance
elements

4:
RES(64)

Simulator channel
4

Simulator channel 4 resistance
elements

5:
RES(64)

Simulator channel
5

Simulator channel 5 resistance
elements

6:
RES(64)

Simulator channel
6

Simulator channel 6 resistance
elements

Output Sub-
Unit

Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

13: MUX(18) DMM multiplexer

Refer to the 40-265 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

27

40-297 Precision Resistor

40-297 Precision Resistor cards contain an array of sub-units for control and
calibration.

Model 40-297-001 (18 channels): functions for normal operation

Output Sub-
Units

Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(10) Precision resistor 1
2: RES(10) Precision resistor 2
3: RES(10) Precision resistor 3
4: RES(10) Precision resistor 4
5: RES(10) Precision resistor 5
6: RES(10) Precision resistor 6
7: RES(10) Precision resistor 7
8: RES(10) Precision resistor 8
9: RES(10) Precision resistor 9
10: RES(10) Precision resistor 10
11: RES(10) Precision resistor 11
12: RES(10) Precision resistor 12
13: RES(10) Precision resistor 13
14: RES(10) Precision resistor 14
15: RES(10) Precision resistor 15
16: RES(10) Precision resistor 16
17: RES(10) Precision resistor 17
18: RES(10) Precision resistor 18

Model 40-297-001 (18 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable
functions
PIL_SetCalPoint
PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

Applicable functions
PIL_WriteSub
PIL_ViewSub

1: RES(10) Precision resistor
1

PR1 switched resistance elements

2: RES(10) Precision resistor
2

PR2 switched resistance elements

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

28

3: RES(10) Precision resistor
3

PR3 switched resistance elements

4: RES(10) Precision resistor
4

PR4 switched resistance elements

5: RES(10) Precision resistor
5

PR5 switched resistance elements

6: RES(10) Precision resistor
6

PR6 switched resistance elements

7: RES(10) Precision resistor
7

PR7 switched resistance elements

8: RES(10) Precision resistor
8

PR8 switched resistance elements

9: RES(10) Precision resistor
9

PR9 switched resistance elements

10:
RES(10)

Precision resistor
10

PR10 switched resistance elements

11:
RES(10)

Precision resistor
11

PR11 switched resistance elements

12:
RES(10)

Precision resistor
12

PR12 switched resistance elements

13:
RES(10)

Precision resistor
13

PR13 switched resistance elements

14:
RES(10)

Precision resistor
14

PR14 switched resistance elements

15:
RES(10)

Precision resistor
15

PR15 switched resistance elements

16:
RES(10)

Precision resistor
16

PR16 switched resistance elements

17:
RES(10)

Precision resistor
17

PR17 switched resistance elements

18:
RES(10)

Precision resistor
18

PR18 switched resistance elements

Model 40-297-002 (9 channels): functions for normal operation

Output Sub-
Units

Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(19) Precision resistor 1
2: RES(19) Precision resistor 2
3: RES(19) Precision resistor 3
4: RES(19) Precision resistor 4
5: RES(19) Precision resistor 5
6: RES(19) Precision resistor 6
7: RES(19) Precision resistor 7
8: RES(19) Precision resistor 8
9: RES(19) Precision resistor 9

Model 40-297-002 (9 channels): calibration functions

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

29

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable
functions
PIL_SetCalPoint
PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

Applicable functions
PIL_WriteSub
PIL_ViewSub

1:
RES(19)

Precision resistor
1

PR1 switched resistance elements

2:
RES(19)

Precision resistor
2

PR2 switched resistance elements

3:
RES(19)

Precision resistor
3

PR3 switched resistance elements

4:
RES(19)

Precision resistor
4

PR4 switched resistance elements

5:
RES(19)

Precision resistor
5

PR5 switched resistance elements

6:
RES(19)

Precision resistor
6

PR6 switched resistance elements

7:
RES(19)

Precision resistor
7

PR7 switched resistance elements

8:
RES(19)

Precision resistor
8

PR8 switched resistance elements

9:
RES(19)

Precision resistor
9

PR9 switched resistance elements

Model 40-297-003 (6 channels): functions for normal operation

Output Sub-
Units

Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(28) Precision resistor 1
2: RES(28) Precision resistor 2
3: RES(28) Precision resistor 3
4: RES(28) Precision resistor 4
5: RES(28) Precision resistor 5
6: RES(28) Precision resistor 6

Model 40-297-003 (6 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable functions
PIL_SetCalPoint
PIL ReadCalFP

Applicable functions
PIL_WriteSub
PIL_ViewSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

30

PIL_WriteCalFP
PIL_WriteCalDate

1: RES(28) Precision resistor 1 PR1 switched resistance
elements

2: RES(28) Precision resistor 2 PR2 switched resistance
elements

3: RES(28) Precision resistor 3 PR3 switched resistance
elements

4: RES(28) Precision resistor 4 PR4 switched resistance
elements

5: RES(28) Precision resistor 5 PR5 switched resistance
elements

6: RES(28) Precision resistor 6 PR6 switched resistance
elements

Refer to the 40-297 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

31

40-412-001 Digital Input-Output

The 40-412-001 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Units Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub
PIL_MaskBit
PIL_ViewMaskBit
PIL_WriteMask
PIL_ViewMask
PIL_ClearMask

1: DIGITAL(32) Controls output SINK driver states, each bit:
0 = INACTIVE
1 = ACTIVE

2: DIGITAL(32) Controls output SOURCE driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

3: DIGITAL(12) Set input threshold 1 (12-bit binary value)
4: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

5: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
PIL_ReadSub

1: INPUT(2) Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

32

NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is
undefined.

Refer to the 40-412 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

33

40-412-101 Digital Input-Output

The 40-412-101 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Units Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub
PIL_MaskBit
PIL_ViewMaskBit
PIL_WriteMask
PIL_ViewMask
PIL_ClearMask

1: DIGITAL(32) Controls output SINK driver states, each bit:
0 = INACTIVE
1 = ACTIVE

2: DIGITAL(32) Controls output SOURCE driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

3: DIGITAL(12) Set input threshold 1 (12-bit binary value)
4: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Input Sub-
Units

Applicable function
PIL_ReadSub

1:
INPUT(64)

Gets levels of all 32 input channels, relative to the
set thresholds. All input channels are sampled
synchronously.

Refer to the 40-412 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

34

40-413-001 Digital Input-Output

The 40-413-001 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub
PIL_MaskBit
PIL_ViewMaskBit
PIL_WriteMask
PIL_ViewMask
PIL_ClearMask

1: DIGITAL(32) Controls output (SOURCE) driver states, each
bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

2: DIGITAL(12) Set input threshold 1 (12-bit binary value)
3: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

4: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
PIL_ReadSub

1: INPUT(2) Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).
NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

35

undefined.

Refer to the 40-413 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

36

40-413-002 Digital Input-Output

The 40-413-002 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub
PIL_MaskBit
PIL_ViewMaskBit
PIL_WriteMask
PIL_ViewMask
PIL_ClearMask

1: DIGITAL(32) Controls output (SINK) driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

2: DIGITAL(12) Set input threshold 1 (12-bit binary value)
3: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

4: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
PIL_ReadSub

1: INPUT(2) Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).
NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is
undefined.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

37

Refer to the 40-413 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

38

40-413-003 Digital Input-Output

The 40-413-003 Digital Input-Output card contains an array of sub-units for its
operation:

Output Sub-Units Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub
PIL_MaskBit
PIL_ViewMaskBit
PIL_WriteMask
PIL_ViewMask
PIL_ClearMask

1: DIGITAL(32) Controls output SINK driver states, each bit:
0 = INACTIVE
1 = ACTIVE

2: DIGITAL(32) Controls output SOURCE driver states, each bit:
0 = INACTIVE
1 = ACTIVE

Output Sub-Units Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

3: DIGITAL(12) Set input threshold 1 (12-bit binary value)
4: DIGITAL(12) Set input threshold 2 (12-bit binary value)

Output Sub-Unit Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

5: MUX(32) Input channel selector

Input Sub-
Units

Applicable function
PIL_ReadSub

1: INPUT(2) Gets level of selected input channel (2 bits):
00 = below threshold 2, below threshold 1
01 = below threshold 2, above threshold 1
10 = above threshold 2, below threshold 1
11 = above threshold 2, above threshold 1

2:
INPUT(64)

Gets levels of all 32 input channels (2 bits each, as
above).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

39

NOTE: each input channel from 1 to 32 is sampled
sequentially. The precise rate of sampling is
undefined.

Refer to the 40-413 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

40

41-750-001 Battery Simulator

The 41-750-001 Battery Simulator card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Unit

Applicable
functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

1: MUX(4) PIMS multiplexer

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

2:
DIGITAL(96)

Current-sink setting

3:
DIGITAL(16)

Voltage output DAC
setting

Output Sub-
Unit

Applicable
functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

8: DIGITAL(1) Output on/off
control

Input Sub-
Unit

Applicable functions
PIL_ReadBit
PIL_ReadSub

1: INPUT(1) Read the Reg Limit Shutdown PXI Monitor
signal

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

41

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub

4: DIGITAL(8) RDAC1 register (pot #1 volatile setting)
5: DIGITAL(8) RDAC3 register (pot #3 volatile setting)
6: DIGITAL(8) EEMEM1 register (pot #1 non-volatile

setting)
7: DIGITAL(8) EEMEM3 register (pot #3 non-volatile

setting)

Input Sub-
Units

Applicable function
PIL_ReadSub

2: INPUT(8) Read RDAC1 register (pot #1 volatile
setting)

3: INPUT(8) Read RDAC3 register (pot #3 volatile
setting)

Refer to the 41-750-001 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

42

41-751-001 Battery Simulator

The 41-751-001 Battery Simulator card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Unit

Applicable
functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

1: MUX(4) PIMS multiplexer

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

2:
DIGITAL(48)

Current-sink setting

3:
DIGITAL(16)

Voltage output DAC
setting

Output Sub-
Unit

Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

8: DIGITAL(1) Output on/off control

Input Sub-
Unit

Applicable functions
PIL_ReadBit
PIL_ReadSub

1: INPUT(2) Read status signals RLSPM,
CDPM

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

43

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub

4: DIGITAL(8) RDAC2 register (pot #2 volatile setting)
5: DIGITAL(8) RDAC3 register (pot #3 volatile setting)
6: DIGITAL(8) EEMEM2 register (pot #2 non-volatile

setting)
7: DIGITAL(8) EEMEM3 register (pot #3 non-volatile

setting)
9: DIGITAL(8) RDAC1 register (pot #1 volatile setting)
10:
DIGITAL(8)

EEMEM1 register (pot #1 non-volatile
setting)

Input Sub-
Units

Applicable function
PIL_ReadSub

2: INPUT(8) Read RDAC2 register (pot #2 volatile
setting)

3: INPUT(8) Read RDAC3 register (pot #3 volatile
setting)

4: INPUT(8) Read RDAC1 register (pot #1 volatile
setting)

Refer to the 41-751-001 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

44

41-752-001 and 41-752-901 Battery Simulator

The 41-752-001 and 41-752-901 Battery Simulator cards contain identical arrays
of sub-units for control and calibration.

Functions for normal operation

Output
Sub-
Units

Applicable functions
PIL_BattSetVoltage
PIL_BattGetVoltage
PIL_BattSetCurrent
PIL_BattGetCurrent
PIL_BattSetEnable
PIL_BattGetEnable
PIL_BattReadInterlockState

1:
BATT(14)
2:
BATT(14)
3:
BATT(14)
4:
BATT(14)
5:
BATT(14)
6:
BATT(14)

Battery simulator channels
1 thru 6

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

1: BATT(14)
2: BATT(14)
3: BATT(14)
4: BATT(14)
5: BATT(14)
6: BATT(14)

Simulator channels 1
thru 6 voltage-
setting DACs (direct
binary access)

Output Sub-
Units

Applicable functions
PIL_WriteCal
PIL_ReadCal

1: BATT(14) Simulator channels 1

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

45

2: BATT(14)
3: BATT(14)
4: BATT(14)
5: BATT(14)
6: BATT(14)

thru 6 calibration
data (14 x 16-bit
values per channel)

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

7:
DIGITAL(16)
8:
DIGITAL(16)
9:
DIGITAL(16)
10:
DIGITAL(16)
11:
DIGITAL(16)
12:
DIGITAL(16)

Simulator channels 1
thru 6 current-
setting DACs (direct
binary access)

Output Sub-
Unit

Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_OpBit
PIL_ViewBit
PIL_ClearSub

13:
DIGITAL(6)

Simulator channels 1
thru 6 enable

Input Sub-
Unit

Applicable functions
PIL_ReadSub
PIL_ReadBit

1: INPUT(1) Global interlock
state

Refer to the 41-752-001 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

46

41-753-001 Battery Simulator

The 41-753-001 Battery Simulator card contains an array of sub-units for control
and calibration.

Functions for normal operation

Output Sub-
Unit

Applicable
functions
PIL_OpBit
PIL_ViewBit
PIL_ViewSub
PIL_ClearSub

1: MUX(4) PIMS multiplexer

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

2:
DIGITAL(96)

Current-sink setting

3:
DIGITAL(16)

Voltage output DAC
setting

11:
DIGITAL(16)

Output Resistance DAC
setting

Output Sub-
Unit

Applicable functions
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ClearSub

8: DIGITAL(1) Output on/off control

Input Sub-
Unit

Applicable functions
PIL_ReadBit
PIL_ReadSub

1: INPUT(2) Read status signals RLSPM,
CDPM

Calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

47

Output Sub-
Units

Applicable functions
PIL_WriteSub
PIL_ViewSub

4: DIGITAL(8) RDAC2 register (pot #2 volatile setting)
5: DIGITAL(8) RDAC3 register (pot #3 volatile setting)
6: DIGITAL(8) EEMEM2 register (pot #2 non-volatile

setting)
7: DIGITAL(8) EEMEM3 register (pot #3 non-volatile

setting)
9: DIGITAL(8) RDAC1 register (pot #1 volatile setting)
10:
DIGITAL(8)

EEMEM1 register (pot #1 non-volatile
setting)

Input Sub-
Units

Applicable function
PIL_ReadSub

2: INPUT(8) Read RDAC2 register (pot #2 volatile
setting)

3: INPUT(8) Read RDAC3 register (pot #3 volatile
setting)

4: INPUT(8) Read RDAC1 register (pot #1 volatile
setting)

Refer to the 41-753-001 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

48

50-297 Precision Resistor

50-297 Precision Resistor cards contain an array of sub-units for control and
calibration.

Model 50-297-001 (18 channels): functions for normal operation

Output Sub-
Units

Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(10) Precision resistor 1
2: RES(10) Precision resistor 2
3: RES(10) Precision resistor 3
4: RES(10) Precision resistor 4
5: RES(10) Precision resistor 5
6: RES(10) Precision resistor 6
7: RES(10) Precision resistor 7
8: RES(10) Precision resistor 8
9: RES(10) Precision resistor 9
10: RES(10) Precision resistor 10
11: RES(10) Precision resistor 11
12: RES(10) Precision resistor 12
13: RES(10) Precision resistor 13
14: RES(10) Precision resistor 14
15: RES(10) Precision resistor 15
16: RES(10) Precision resistor 16
17: RES(10) Precision resistor 17
18: RES(10) Precision resistor 18

Model 50-297-001 (18 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable
functions
PIL_SetCalPoint
PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

Applicable functions
PIL_WriteSub
PIL_ViewSub

1: RES(10) Precision resistor
1

PR1 switched resistance elements

2: RES(10) Precision resistor
2

PR2 switched resistance elements

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

49

3: RES(10) Precision resistor
3

PR3 switched resistance elements

4: RES(10) Precision resistor
4

PR4 switched resistance elements

5: RES(10) Precision resistor
5

PR5 switched resistance elements

6: RES(10) Precision resistor
6

PR6 switched resistance elements

7: RES(10) Precision resistor
7

PR7 switched resistance elements

8: RES(10) Precision resistor
8

PR8 switched resistance elements

9: RES(10) Precision resistor
9

PR9 switched resistance elements

10:
RES(10)

Precision resistor
10

PR10 switched resistance elements

11:
RES(10)

Precision resistor
11

PR11 switched resistance elements

12:
RES(10)

Precision resistor
12

PR12 switched resistance elements

13:
RES(10)

Precision resistor
13

PR13 switched resistance elements

14:
RES(10)

Precision resistor
14

PR14 switched resistance elements

15:
RES(10)

Precision resistor
15

PR15 switched resistance elements

16:
RES(10)

Precision resistor
16

PR16 switched resistance elements

17:
RES(10)

Precision resistor
17

PR17 switched resistance elements

18:
RES(10)

Precision resistor
18

PR18 switched resistance elements

Model 50-297-002 (9 channels): functions for normal operation

Output Sub-
Units

Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(19) Precision resistor 1
2: RES(19) Precision resistor 2
3: RES(19) Precision resistor 3
4: RES(19) Precision resistor 4
5: RES(19) Precision resistor 5
6: RES(19) Precision resistor 6
7: RES(19) Precision resistor 7
8: RES(19) Precision resistor 8
9: RES(19) Precision resistor 9

Model 50-297-002 (9 channels): calibration functions

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

50

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable
functions
PIL_SetCalPoint
PIL_ReadCalFP
PIL_WriteCalFP
PIL_WriteCalDate

Applicable functions
PIL_WriteSub
PIL_ViewSub

1:
RES(19)

Precision resistor
1

PR1 switched resistance elements

2:
RES(19)

Precision resistor
2

PR2 switched resistance elements

3:
RES(19)

Precision resistor
3

PR3 switched resistance elements

4:
RES(19)

Precision resistor
4

PR4 switched resistance elements

5:
RES(19)

Precision resistor
5

PR5 switched resistance elements

6:
RES(19)

Precision resistor
6

PR6 switched resistance elements

7:
RES(19)

Precision resistor
7

PR7 switched resistance elements

8:
RES(19)

Precision resistor
8

PR8 switched resistance elements

9:
RES(19)

Precision resistor
9

PR9 switched resistance elements

Model 50-297-003 (6 channels): functions for normal operation

Output Sub-
Units

Applicable functions
PIL_ResInfo
PIL_ResGetResistance
PIL_ResSetResistance
PIL_ClearSub
PIL_ReadCalDate

1: RES(28) Precision resistor 1
2: RES(28) Precision resistor 2
3: RES(28) Precision resistor 3
4: RES(28) Precision resistor 4
5: RES(28) Precision resistor 5
6: RES(28) Precision resistor 6

Model 50-297-003 (6 channels): calibration functions

Only a calibration utility is expected to use these sub-units and functions.

Output
Sub-Units

Applicable functions
PIL_SetCalPoint
PIL ReadCalFP

Applicable functions
PIL_WriteSub
PIL_ViewSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

51

PIL_WriteCalFP
PIL_WriteCalDate

1: RES(28) Precision resistor 1 PR1 switched resistance
elements

2: RES(28) Precision resistor 2 PR2 switched resistance
elements

3: RES(28) Precision resistor 3 PR3 switched resistance
elements

4: RES(28) Precision resistor 4 PR4 switched resistance
elements

5: RES(28) Precision resistor 5 PR5 switched resistance
elements

6: RES(28) Precision resistor 6 PR6 switched resistance
elements

Refer to the 50-297 User Manual for more detail.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

52

Language Support

Language Support

The Pilpxi driver is provided with support for the following languages and
programming environments:

• Microsoft Visual Basic
• Microsoft Visual C++
• Borland C++
• LabWindows/CVI
• LabVIEW

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

53

Visual Basic

Visual Basic

The following files are required for traditional Visual Basic:

• Pilpxi.bas
• Pilpxi.lib
• Pilpxi.dll

Pilpxi.bas and Pilpxi.lib must be accessible by Visual Basic at compile-time.
Typically, copies of these files can be placed in the folder containing your
application's source files. You should include Pilpxi.bas in your Visual Basic
project.

Pilpxi.dll must be accessible by your application at run-time. Windows searches a
number of standard locations for DLLs in the following order:

1. The directory containing the executable module.
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories listed in the PATH environment variable.

Placing Pilpxi.dll in one of the Windows directories has the advantage that a single
copy serves any number of applications that use it, but does add to the clutter of
system DLLs stored there. The Pickering Setup program places a copy of Pilpxi.dll
in the Windows system directory.

Visual Basic .NET

Include file "Pilpxi.vb" is provided for Visual Basic .NET.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

54

Visual Basic Function Tree

Initialise

Initialise all cards PIL_OpenCards

Initialise single card PIL_OpenSpecifiedCard

Close

Close all cards PIL_CloseCards

Close single card PIL_CloseSpecifiedCard

Card Information and Status

PIL_CardId Get card identification

PIL_CardId_s

Get card location PIL_CardLoc

Get sub-unit closure limit PIL_ClosureLimit

Get count of unopened cards PIL_CountFreeCards

PIL_Diagnostic Get diagnostic information

PIL_Diagnostic_s

Get sub-unit counts PIL_EnumerateSubs

PIL_ErrorMessage Get description of an error

PIL_ErrorMessage_s

Get locations of unopened cards PIL_FindFreeCards

Get sub-unit settling time PIL_SettleTime

Get card status PIL_Status

Get sub-unit information PIL_SubInfo

Get sub-unit status PIL_SubStatus

PIL_SubType Get sub-unit description

PIL_SubType_s

Get driver version PIL_Version

Switching and General Purpose Output

Clear outputs of all open cards PIL_ClearAll

Clear a single card's outputs PIL_ClearCard

Clear a sub-unit's outputs PIL_ClearSub

Set or clear a single output PIL_OpBit

Get a single output's state PIL_ViewBit

PIL_ViewSub

PIL_ViewSub_s

Get a sub-unit's output pattern

PIL_ViewSubArray

PIL_WriteSub

PIL_WriteSub_s

Set a sub-unit's output pattern

PIL_WriteSubArray

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

55

Specialised Switching

Set or clear a matrix crosspoint PIL_OpCrosspoint

Obtain/set the state of a switch PIL_OpSwitch

Get sub-unit attribute PIL_SubAttribute

Get a matrix crosspoint's state PIL_ViewCrosspoint

Switch Masking

Clear a sub-unit's mask PIL_ClearMask

Set or clear a single output's mask PIL_MaskBit

Set or clear a matrix crosspoint's mask PIL_MaskCrosspoint

PIL_ViewMask

PIL_ViewMask_s

Get a sub-unit's mask pattern

PIL_ViewMaskArray

Get a single output's mask state PIL_ViewMaskBit

Get a matrix crosspoint's mask state PIL_ViewMaskCrosspoint

PIL_WriteMask

PIL_WriteMask_s

Set a sub-unit's mask pattern

PIL_WriteMaskArray

Input

Read single input PIL_ReadBit

PIL_ReadSub Read input sub-unit pattern

PIL_ReadSub_s

Calibration

Read an integer calibration value PIL_ReadCal

Read a sub-unit's calibration date PIL_ReadCalDate

Read floating-point calibration value(s) PIL_ReadCalFP

Set Calibration Point PIL_SetCalPoint

Write an integer calibration value PIL_WriteCal

Write a sub-unit's calibration date PIL_WriteCalDate

Write floating-point calibration value(s) PIL_WriteCalFP

Programmable Resistor

Get resistance value PIL_ResGetResistance

Get resistor information PIL_ResInfo

Set resistance value PIL_ResSetResistance

Programmable RF Attenuator

Get attenuation setting PIL_AttenGetAttenuation

Get attenuator information PIL_AttenInfo

Get the attenuation of a pad PIL_AttenPadValue

Set attenuation level PIL_AttenSetAttenuation

PIL_AttenType Get attenuator description

PIL_AttenType_s

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

56

Power Supplies

Enable/disable output PIL_PsuEnable

Get output voltage setting PIL_PsuGetVoltage

Get PSU information PIL_PsuInfo

Set output voltage PIL_PsuSetVoltage

PIL_PsuType Get PSU description

PIL_PsuType_s

Battery Simulator

Set voltage PIL_BattSetVoltage
Get voltage PIL_BattGetVoltage
Set current PIL_BattSetCurrent
Get current PIL_BattGetCurrent
Set enable PIL_BattSetEnable
Get enable PIL_BattGetEnable
Read interlock state PIL_BattReadInterlockState
Thermocouple Simulator

Set range PIL_VsourceSetRange
Get range PIL_VsourceGetRange
Set Voltage PIL_VsourceSetVoltage
Get Voltage PIL_VsourceGetVoltage
Set Enable PIL_VsourceSetEnable
Get Enable PIL_VsourceGetEnable
Mode Control

Set driver mode PIL_SetMode

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

57

Visual Basic Code Sample

A small demonstration project illustrates usage of many of the driver's functions.
It consists of the following files in addition to the necessary driver files:

• VBDEMO.VBP
• VBDEMO.FRM

WARNING

WHEN RUN, THIS PROGRAM ACTIVATES OUTPUTS BOTH INDIVIDUALLY AND IN
COMBINATIONS. IT SHOULD NOT BE RUN UNDER ANY CONDITIONS WHERE
DAMAGE COULD RESULT FROM SUCH EVENTS. FOR GREATEST SAFETY IT
SHOULD BE RUN ONLY WHEN NO EXTERNAL POWER IS APPLIED TO ANY CARD.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

58

Initialise and Close

Initialise and Close

This section details the use in Visual Basic of functions for initialising and closing
cards.

The Pilpxi driver supports two mechanisms for taking control of Pickering cards.
The two mechanisms are mutually exclusive - the first use of one method after
loading the driver DLL disables the other.

Controlling all cards

This method allows a single application program to open and access all installed
Pickering cards. Using this method the cards are first opened by calling function
PIL_OpenCards. Cards can then be accessed by other driver functions as
necessary.

When the application has finished using the cards it should close them by calling
function PIL_CloseCards.

Controlling cards individually

This method allows application programs to open and access Pickering cards on
an individual basis. Using this method a card is first opened by calling function
PIL_OpenSpecifiedCard. The card can then be accessed by other driver functions
as necessary.

When the application has finished using the card it should be closed by calling
function PIL_CloseSpecifiedCard.

Functions PIL_CountFreeCards and PIL_FindFreeCards assist in locating cards for
opening by this mechanism.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

59

Close All Cards (Visual Basic)

Description

Closes all open Pickering cards, which must have been opened using
PIL_OpenCards. This function should be called when the application program has
finished using them.

Declaration

Declare Sub PIL_CloseCards Lib "Pilpxi.dll" ()

Parameters:

None.

Returns:

Nothing.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

60

Close Specified Card (Visual Basic)

Description

Closes the specified Pickering card, which must have been opened using
PIL_OpenSpecifiedCard. This function should be called when the application
program has finished using the card.

Declaration

Declare Function PIL_CloseSpecifiedCard Lib "Pilpxi.dll" (ByVal CardNum As
Long) As Long

Parameters:

CardNum - card number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

61

Open All Cards (Visual Basic)

Description

Locates and opens all installed Pickering cards. Once cards have been opened,
other functions may then be used to access cards numbered 1 thru the value
returned.

If cards have already been opened by the calling program, they are first closed -
as though by PIL_CloseCards - and then re-opened.

If cards are currently opened by some other program they cannot be accessed
and the function returns zero.

Declaration

Declare Function PIL_OpenCards Lib "Pilpxi.dll" () As Long

Parameters:

None.

Returns:

The number of Pickering cards located and opened.

Note

When multiple Pickering cards are installed, the assignment of card numbers
depends upon their relative physical locations in the system (or more accurately,
on the order in which they are detected by the computer's operating system at
boot time).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

62

Open Specified Card (Visual Basic)

Description

Opens the specified Pickering card, clearing all of its outputs. Once a card has
been opened, other driver functions may then be used to access it.

If the card is currently opened by some other program it cannot be accessed and
the function returns an error.

Declaration

Declare Function PIL_OpenSpecifiedCard Lib "Pilpxi.dll" (ByVal Bus As Long,
ByVal Slot As Long, ByRef CardNum As Long) As Long

Parameters:

Bus - the card's logical bus location

Slot - the card's logical slot location

CardNum - variable to receive the card's logical card number

Returns:

Zero for success, or non-zero error code.

Note

The logical Bus and Slot values corresponding to a particular card are determined
by system topology; values for cards that are operable by the Pilpxi driver can be
discovered using PIL_FindFreeCards.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

63

Information and Status

Information and Status

This section details the use in Visual Basic of functions for obtaining card and sub-
unit information. Most of these functions are applicable to all card or sub-unit
types.

Functions are provided for obtaining:

• The software driver version number: PIL_Version
• The number of unopened cards: PIL_CountFreeCards
• The bus and slot locations of unopened cards: PIL_FindFreeCards
• A card's identification string: PIL_CardId
• A card's logical bus and slot location: PIL_CardLoc
• A card's status flags: PIL_Status
• A string describing an error from the numeric code returned by a function:

PIL_ErrorMessage
• A card's diagnostic information string: PIL_Diagnostic
• The numbers of input and output sub-units on a card: PIL_EumerateSubs
• Sub-unit information (numeric format): PIL_SubInfo
• Sub-unit information (string format): PIL_SubType
• An output sub-unit's closure limit value: PIL_ClosureLimit
• An output sub-unit's settling time value: PIL_SettleTime
• A sub-unit's status flags: PIL_SubStatus

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

64

Card ID (Visual Basic)

Description

Obtains the identification string of the specified card. The string contains these
elements:

<type code>,<serial number>,<revision code>.

The <revision code> value represents the hardware/firmware version of the unit.

Declaration

Declare Function PIL_CardId Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
Str As String) As Long

Parameters:

CardNum - card number

Str - reference to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_CardId_s.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_ID_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

65

Card Location (Visual Basic)

Description

Obtains the location of the specified card in terms of the logical PCI bus and slot
number in which it is located.
These values can be cross-referenced to physical slot locations in a particular
system.

Declaration

Declare Function PIL_CardLoc Lib "Pilpxi.dll" (ByVal CardNum As Long, ByRef
Bus As Long, ByRef Slot As Long) As Long

Parameters:

CardNum - card number

Bus - reference to variable to receive bus location

Slot - reference to variable to receive slot location

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

66

Closure Limit (Visual Basic)

Description

Obtains the maximum number of switches that may be activated simultaneously
in the specified sub-unit. A single-channel multiplexer (MUX type) allows only one
channel to be closed at any time. In some other models such as high-density
matrix types a limit is imposed to prevent overheating; although it is possible to
disable the limit for these types (see PIL_SetMode), doing so is not
recommended.

Declaration

Declare Function PIL_ClosureLimit Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Limit As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Limit - the variable to receive the result

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

67

Count Free Cards (Visual Basic)

Description

Obtains the number of installed cards that are operable by the Pilpxi driver but
are not currently opened by it.

Declaration

Declare Function PIL_CountFreeCards Lib "Pilpxi.dll" (ByRef NumCards As
Long) As Long

Parameters:

NumCards - reference to variable to receive the result

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

68

Diagnostic (Visual Basic)

Description

Obtains the diagnostic string of the specified card, giving expanded information
on any fault conditons indicated by the PIL_Status value.

Declaration

Declare Function PIL_Diagnostic Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal Str As String) As Long

Parameters:

CardNum - card number

Str - reference to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_Diagnostic_s.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The result string may include embedded newline characters, coded as the ASCII
<linefeed> character (&H0A). If the string is to be displayed they should be
expanded to vbCrLf.

The length of the result string will not exceed the value of driver constant
MAX_DIAG_LENGTH.

Warning

Formatting and content of the diagnostic string may change as enhanced
diagnostic features are made available. It should therefore not be interpreted
programatically.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

69

Enumerate Sub-units (Visual Basic)

Description

Obtains the numbers of input and output sub-units implemented on the specified
card.

Declaration

Declare Function PIL_EnumerateSubs Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByRef InSubs As Long, ByRef OutSubs As Long) As Long

Parameters:

CardNum - card number

InSubs - reference to variable to receive the number of INPUT sub-units

OutSubs - reference to variable to receive the number of OUTPUT sub-units

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

70

Error Message (Visual Basic)

Description

Obtains a string description of the error codes returned by other driver functions.

Declaration

Declare Function PIL_ErrorMessage Lib "Pilpxi.dll" (ByVal ErrorCode As Long,
ByVal Str As String) As Long

Parameters:

ErrorCode - the error code to be described

Str - reference to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_ErrorMessage_s.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_ERR_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

71

Find Free Cards (Visual Basic)

Description

Obtains the logical bus and slot locations of installed cards that are operable by
the Pilpxi driver and are currently unopened. These values are used with
PIL_OpenSpecifiedCard.

Declaration

Declare Function PIL_FindFreeCards Lib "Pilpxi.dll" (ByVal NumCards As Long,
ByRef BusList As Long, ByRef SlotList As Long) As Long

Parameters:

NumCards - the number of cards (maximum) for which information is to be
obtained

BusList - reference to the one-dimensional array (vector) to receive cards' bus
location values

SlotList - reference to the one-dimensional array (vector) to receive cards' slot
location values

Returns:

Zero for success, or non-zero error code.

Notes

The bus and slot locations of the first card found are placed respectively in the
least significant elements of the BusList and SlotList arrays. Successive elements
contain the values for further cards.

If the value given for NumCards is less than the number of cards currently
accessible, information is obtained only for the number of cards specified.

To use this function in Visual Basic, it must be passed references to the first
elements of the data arrays. For example, assuming zero-based arrays:

PIL_FindFreeCards(NumCards, BusList(0), SlotList(0))

Warning

The arrays referenced must have been assigned at least as many elements as the
number of cards for which information is being requested or adjacent memory will
be overwritten, causing data corruption and/or a program crash. The number of
accessible cards can be discovered using PIL_CountFreeCards.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

72

Settle Time (Visual Basic)

Description

Obtains a sub-unit's settling time (or debounce period - the time taken for its
switches to stabilise). By default, Pilpxi driver functions retain control during this
period so that switches are guaranteed to have stabilised on completion. This
mode of operation can be overridden if required - see PIL_SetMode.

Declaration

Declare Function PIL_SettleTime Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Ti As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Ti - the variable to receive the result (in microseconds)

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

73

Card Status (Visual Basic)

Description

Obtains the current status flags for the specified card.

Declaration

Declare Function PIL_Status Lib "Pilpxi.dll" (ByVal CardNum As Long) As Long

Parameters:

CardNum - card number

Returns:

A value representing the card's status flags.

Status Bit Definitions

Status bits are as follows:

&H80000000 - STAT_NO_CARD (no card with specified number)

&H40000000 - STAT_WRONG_DRIVER (card requires newer driver)

&H20000000 - STAT_EEPROM_ERR (card EEPROM fault)

&H10000000 - STAT_DISABLED (card disabled)

&H04000000 - STAT_BUSY (card operations not completed)

&H02000000 - STAT_HW_FAULT (card hardware defect)

&H01000000 - STAT_PARITY_ERROR (PCIbus parity error)

&H00080000 - STAT_CARD_INACCESSIBLE (Card cannot be accessed -
failed/removed/unpowered)

&H00040000 - STAT_UNCALIBRATED (one or more sub-units is uncalibrated)

&H00020000 - STAT_CALIBRATION_DUE (one or more sub-units is due for
calibration)

&H00000000 - STAT_OK (card functional and stable)

Corresponding global constants are provided in Pilpxi.bas.

Notes

Certain status bits are relevant only for specific classes of sub-unit, or for those
having particular characteristics.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

74

At card level, STAT_BUSY indicates if any of a card's sub-units have not yet
stabilised.

Diagnostic information on fault conditions indicated in the status value can be
obtained using PIL_Diagnostic.

Related functions

PIL_SubStatus

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

75

Sub-unit Information (Visual Basic)

Description

Obtains a description of a sub-unit, as numeric values.

Declaration

Declare Function PIL_SubInfo Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByVal Out As Boolean, ByRef TypeNum As Long, ByRef
Rows As Long, ByRef Cols As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

TypeNum - reference to variable to receive type code

Rows - reference to variable to receive row count

Cols - reference to variable to receive column count

Returns:

Zero for success, or non-zero error code.

Results

Output sub-unit type codes are:

1 - TYPE_SW (uncommitted switch)

2 - TYPE_MUX (multiplexer single-channel)

3 - TYPE_MUXM (multiplexer, multi-channel)

4 - TYPE_MAT (matrix - LF)

5 - TYPE_MATR (matrix - RF)

6 - TYPE_DIG (digital outputs)

7 - TYPE_RES (programmable resistor)

8 - TYPE_ATTEN (programmable RF attenuator)

9 - TYPE_PSUDC (DC power supply)

10 - TYPE_BATT (battery simulator)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

76

11 - TYPE_VSOURCE (programmable voltage source)

12 - TYPE_MATP (matrix with restricted operating modes)

Corresponding global constants are provided in Pilpxi.bas.

Input sub-unit type codes are:

1 - INPUT

Row and column values give the dimensions of the sub-unit. For all types other
than matrices the column value contains the significant dimension: their row
value is always '1'.

Note

Some sub-unit types are supported by functions providing alternate and/or more
detailed information. These include:

TYPE_ATTEN - PIL_AttenInfo

TYPE_PSUDC - PIL_PsuInfo

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

77

Sub-unit Status (Visual Basic)

Description

Obtains the current status flags for the specified output sub-unit. Status bits
associated with significant card-level conditions are also returned.

Declaration

Declare Function PIL_SubStatus Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Returns:

A value representing the sub-unit's status flags.

Status Bit Definitions

Status bits are as follows:

&H80000000 - STAT_NO_CARD (no card with specified number)

&H40000000 - STAT_WRONG_DRIVER (card requires newer driver)

&H20000000 - STAT_EEPROM_ERR (card EEPROM fault)

&H10000000 - STAT_DISABLED (card disabled)

&H08000000 - STAT_NO_SUB (no sub-unit with specified number)

&H04000000 - STAT_BUSY (sub-unit operations not completed)

&H02000000 - STAT_HW_FAULT (card hardware defect)

&H01000000 - STAT_PARITY_ERROR (PCIbus parity error)

&H00800000 - STAT_PSU_INHIBITED (power supply output is disabled - by
software)

&H00400000 - STAT_PSU_SHUTDOWN (power supply output is shutdown -
due to overload)

&H00200000 - STAT_PSU_CURRENT_LIMIT (power supply is operating in
current-limited mode)

&H00100000 - STAT_CORRUPTED (sub-unit logical state is corrupted)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

78

&H00080000 - STAT_CARD_INACCESSIBLE (Card cannot be accessed -
failed/removed/unpowered)

&H00040000 - STAT_UNCALIBRATED (sub-unit is uncalibrated)

&H00020000 - STAT_CALIBRATION_DUE (sub-unit is due for calibration)

&H00000000 - STAT_OK (sub-unit functional and stable)

Corresponding global constants are provided in Pilpxi.bas.

Notes

Certain status bits are relevant only for specific classes of sub-unit, or for those
having particular characteristics.

Diagnostic information on fault conditions indicated in the status value can be
obtained using PIL_Diagnostic.

Related functions

PIL_Status

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

79

Sub-unit Type (Visual Basic)

Description

Obtains a description of a sub-unit, as a text string.

Declaration

Declare Function PIL_SubType Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByVal Out As Boolean, ByVal Str As String) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

Str - reference to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Type string Description

INPUT(<size>) Digital inputs

SWITCH(<size>) Uncommitted switches

MUX(<size>) Multiplexer, single-channel
only

MUXM(<size>) Multiplexer, multi-channel

MATRIX(<columns>X<rows>) Matrix, LF

MATRIXR(<columns>X<rows>) Matrix, RF

DIGITAL(<size>) Digital Outputs

RES(<number of resistors in chain>) Programmable resistor

ATTEN(<number of pads>) Programmable RF attenuator -
see note

PSUDC(0) DC Power Supply - see note

BATT(<Voltage DAC resolution,
bits>) Battery simulator

VSOURCE(<Voltage DAC resolution,
bits>) Programmable voltage source

MATRIXP(<columns>X<rows>) Matrix with restricted
operating modes

Notes

A more secure version of this function exists as PIL_SubType_s.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

80

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

Some sub-unit types are supported by functions providing more detailed
information. These include:

ATTEN - PIL_AttenType

PSUDC - PIL_PsuType

The length of the result string will not exceed the value of driver constant
MAX_SUB_TYPE_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

81

Version (Visual Basic)

Description

Obtains the driver version code.

Declaration

Declare Function PIL_Version Lib "Pilpxi.dll" () As Long

Parameters:

None.

Returns:

The driver version code, multiplied by 100 (i.e. a value of 100 represents
version 1.00)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

82

Switching and General Purpose Output

Switching and General Purpose Output

This section details the use in Visual Basic of functions that are applicable to most
output sub-unit types.

Note that although these functions may be used with them, some sub-unit types -
for example matrix and programmable RF attenuator - are also served by specific
functions offering more straightforward control.

Functions are provided to:

• Clear all output channels of all open Pickering cards: PIL_ClearAll
• Clear all output channels of a single Pickering card: PIL_ClearCard
• Clear all output channels of a sub-unit: PIL_ClearSub
• Open or close a single output channel: PIL_OpBit
• Set a sub-unit's output pattern: (PIL_WriteSub), PIL_WriteSubArray
• Obtain the state of a single output channel: PIL_ViewBit
• Obtain a sub-unit's output pattern: (PIL_ViewSub), PIL_ViewSubArray

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

83

Clear All (Visual Basic)

Description

Clears (de-energises or sets to logic '0') all outputs of all sub-units of every open
Pickering card.

Declaration

Declare Function PIL_ClearAll Lib "Pilpxi.dll" () As Long

Parameters:

None.

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

84

Clear Card (Visual Basic)

Description

Clears (de-energises or sets to logic '0') all outputs of all sub-units of the
specified Pickering card.

Declaration

Declare Function PIL_ClearCard Lib "Pilpxi.dll" (ByVal CardNum As Long) As
Long

Parameters:

CardNum - card number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

85

Clear Sub-unit (Visual Basic)

Description

Clears (de-energises or sets to logic '0') all outputs of a sub-unit.

Declaration

Declare Function PIL_ClearSub Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

86

Operate Bit (Visual Basic)

Description

Operate a single output channel or bit.

Note that in the case of a single-channel multiplexer (MUX type) any existing
channel closure will be cleared automatically prior to selecting the new channel.

Note that PIL_OpCrosspoint allows more straightforward use of row/column co-
ordinates with matrix sub-units.

Declaration

Declare Function PIL_OpBit Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByVal BitNum As Long, ByVal Action As Boolean) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

Action - 1 to energise, 0 to de-energise

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

87

View Bit (Visual Basic)

Description

Obtains the state of an individual output.

Declaration

Declare Function PIL_ViewBit Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByVal BitNum As Long, ByRef State As Boolean) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

State - the variable to receive the result (0 = OFF or logic '0', 1 = ON or logic
'1')

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

88

View Sub-unit (Visual Basic)

Description

Obtains the state of all outputs of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Declaration

Declare Function PIL_ViewSub Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByRef Data As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_ViewSub_s. However
although these functions are usable in Visual Basic, PIL_ViewSubArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

PIL_ViewSub(CardNum, OutSub, Data)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

PIL_ViewSub(CardNum, OutSub, Data(0))

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Warning

The data array referenced must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

89

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

90

View Sub-unit - Native Array (Visual Basic)

Description

Obtains the state of all outputs of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Declaration

Declare Function PIL_ViewSubArray Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data() As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

This function must be passed a reference to the data array, for example:

PIL_ViewSubArray(CardNum, OutSub, Data())

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Example Code

See the description of PIL_WriteSubArray for example code using a safe array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

91

Write Sub-unit (Visual Basic)

Description

Sets all outputs of a sub-unit to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written.

Declaration

Declare Function PIL_WriteSub Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByRef Data As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) containing the bit-
pattern to be written

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_WriteSub_s. However
although these functions are usable in Visual Basic, PIL_WriteSubArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

PIL_WriteSub(CardNum, OutSub, Data)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

PIL_WriteSub(CardNum, OutSub, Data(0))

For a Matrix sub-unit, the data is folded into the vector on its row-axis: see Data
Formats.

Warning

The data array referenced must contain sufficient bits to represent the bit-pattern
for the specified sub-unit, or undefined data will be written to the more significant
bits.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

92

Example Code

For clarity, this example omits initialising the variables CardNum, OutSub etc. and
does no error-checking.

' Dimension a longword data array (index base zero) to contain the

' number of bits necessary to represent the sub-unit (e.g. 2
longwords

' supports sub-units having upto 64 switches)

Dim Data(1) As Long ' Value specifies the highest allowed index

' Data(0) bit 0 represents switch #1

' Data(0) bit 1 represents switch #2

' ... etc.

' Data(0) bit 31 represents switch #32

' Data(1) bit 0 represents switch #33

' ... etc.

' Setup array data to turn on switches 3, 33 and output to the card

Data(0) = &H4 ' set longword 0 bit 2 (switch 3)

Data(1) = &H1 ' set longword 1 bit 0 (switch 33)

Result = PIL_WriteSub(CardNum, OutSub, Data(0))

' Add switch 4 to the array and output to the card

Data(0) = (Data(0) Or &H8) ' set longword 0 bit 3 (switch 4)

Result = PIL_WriteSub(CardNum, OutSub, Data(0))

' ... now have switches 3, 4, 33 energised

' Delete switch 33 from the array and output to the card

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

93

Data(1) = (Data(1) And &HFFFFFFFE) ' clear longword 1 bit 0 (switch
33)

Result = PIL_WriteSub(CardNum, OutSub, Data(0))

' ... leaving switches 3 and 4 energised

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

94

Write Sub-unit - Native Array (Visual Basic)

Description

Sets all outputs of a sub-unit to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written.

Declaration

Declare Function PIL_WriteSubArray Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data() As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) containing the bit-
pattern to be written

Returns:

Zero for success, or non-zero error code.

Notes

This function must be passed a reference to the data array, for example:

PIL_WriteSubArray(CardNum, OutSub, Data())

For a Matrix sub-unit, the data is folded into the vector on its row-axis: see Data
Formats.

Example Code

For clarity, this example omits initialising the variables CardNum, OutSub etc. and
does no error-checking.

' Dimension a longword data array (index base zero) to contain the

' number of bits necessary to represent the sub-unit (e.g. 2
longwords

' supports sub-units having upto 64 switches)

Dim Data(1) As Long ' Value specifies the highest allowed index

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

95

' Data(0) bit 0 represents switch #1

' Data(0) bit 1 represents switch #2

' ... etc.

' Data(0) bit 31 represents switch #32

' Data(1) bit 0 represents switch #33

' ... etc.

' Setup array data to turn on switches 3, 33 and output to the card

Data(0) = &H4 ' set longword 0 bit 2 (switch 3)

Data(1) = &H1 ' set longword 1 bit 0 (switch 33)

Result = PIL_WriteSubArray(CardNum, OutSub, Data())

' Add switch 4 to the array and output to the card

Data(0) = (Data(0) Or &H8) ' set longword 0 bit 3 (switch 4)

Result = PIL_WriteSubArray(CardNum, OutSub, Data())

' ... now have switches 3, 4, 33 energised

' Delete switch 33 from the array and output to the card

Data(1) = (Data(1) And &HFFFFFFFE) ' clear longword 1 bit 0 (switch
33)

Result = PIL_WriteSubArray(CardNum, OutSub, Data())

' ... leaving switches 3 and 4 energised

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

96

Specialised Switching

Specialised Switching

This section details the use in Visual Basic of functions specific to particular types
of switching sub-unit (uncommitted switches, multiplexer, matrix and digital
output types).

Matrix operations

• Open or close a single matrix crosspoint: PIL_OpCrosspoint
• Obtain the state of a single matrix crosspoint: PIL_ViewCrosspoint

• Obtain/set the state of an individual switch: PIL_OpSwitch

• Obtain sub-unit attribute values: PIL_SubAttribute

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

97

Operate Crosspoint (Visual Basic)

Description

Operate a single matrix crosspoint.

Declaration

Declare Function PIL_OpCrosspoint Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Row As Long, ByVal Column As Long, ByVal
Action As Boolean) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

Action - 1 to energise, 0 to de-energise

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_OpBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Related Matrix Functions

PIL_ViewCrosspoint

PIL_MaskCrosspoint

PIL_ViewMaskCrosspoint

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

98

Operate switch (Visual Basic)

Description

This function obtains, and optionally sets, the state of a switch. It allows explicit
access to the individual switches making up a sub-unit, in types where their
operation is normally handled automatically by the driver. The main purpose of
this is in implementing fault diagnostic programs for such types; it can also be
used where normal automated behaviour does not suit an application.

Declaration

Declare Function PIL_OpSwitch Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByVal SwitchFunc As Long, ByVal SegNum As Long, ByVal
SwitchNum As Long, ByVal SubSwitch As Long, ByVal SwitchAction As Long,
ByRef State As Boolean) As Long

Parameters:

CardNum - card number

OutSub - sub-unit number

SwitchFunc - code indicating the functional group of the switch, see below

SegNum - the segment location of the switch

SwitchNum - the number of the switch in its functional group (unity-based)

SubSwitch - the number of the subswitch to operate (unity-based)

SwitchAction - code indicating the action to be performed, see below

State - reference to variable to receive the state of the switch (after
performing any action)

Returns:

Zero for success, or non-zero error code.

Applicable sub-unit types

This function is only usable with MATRIX and MATRIXP sub-units. For further
information about matrix auto-isolation and auto-loopthru features see:
segmented matrix, unsegmented matrix.

SwitchFunc value

A value indicating the functional group of the switch to be accessed.

Value Ident Function

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

99

0 SW_FUNC_CHANNEL A channel (matrix crosspoint) switch

1 SW_FUNC_X_ISO A matrix X-isolation switch

2 SW_FUNC_Y_ISO A matrix Y-isolation switch

3 SW_FUNC_X_LOOPTHRU A matrix X-loopthru switch

4 SW_FUNC_Y_LOOPTHRU A matrix Y-loopthru switch

5 SW_FUNC_X_BIFURCATION A matrix X-bifurcation switch

6 SW_FUNC_Y_BIFURCATION A matrix Y-bifurcation switch

SegNum value

The segment location of the switch. The numbers and sizes of segments on each
matrix axis can be obtained using PIL_SubAttribute.

In an unsegmented matrix, use SegNum = 1.

In a segmented matrix, segment numbers for crosspoint and isolation switches
are determined logically.

SwitchNum value

The number of the switch in its functional group (unity-based).

For channel (crosspoint) switches, the switch number can be either:

• if SegNum is zero, the global channel number of the switch (see output bit
number)

• if SegNum is non-zero, the segment-local number of the switch, calculated
in a similar way to the above

SubSwitch value

The number of the subswitch to operate (unity-based). This parameter caters for
a situation in which a logical channel, isolation or loopthru switch is served by
more than one physical relay (as for example when 2-pole operation is
implemented using independently-driven single-pole relays).

The numbers of subswitches for each functional group can be obtained using
PIL_SubAttribute.

SwitchAction value

A code indicating the action to be performed.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

100

Value Ident Function

0 SW_ACT_NONE No switch change - just set State result

1 SW_ACT_OPEN Open switch

2 SW_ACT_CLOSE Close switch

Loopthru switches

Loopthru switches are initialised by the driver to a closed state, which may mean
that they are either energised or de-energised depending upon their type. In
normal automated operation loopthru switches open when any crosspoint on their
associated line is closed. Actions SW_ACT_CLOSE and SW_ACT_OPEN close or
open loopthru switch contacts as their names imply.

Operational considerations

This function can be used to alter a pre-existing switch state in a sub-unit, set up
by fuctions such as PIL_OpBit or PIL_WriteSubArray. However once the state of
any switch is changed by PIL_OpSwitch the logical state of the sub-unit is
considered to have been destroyed. This condition is flagged in the result of
PIL_SubStatus (bit STAT_CORRUPTED). Subsequent attempts to operate it using
'ordinary' switch functions such as PIL_OpBit, PIL_ViewBit etc. will fail (result
ER_STATE_CORRUPT). Normal operation can be restored by clearing the sub-unit
using PIL_ClearSub, PIL_ClearCard or PIL_ClearAll.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

101

View Crosspoint (Visual Basic)

Description

Obtains the state of an individual matrix crosspoint.

Declaration

Declare Function PIL_ViewCrosspoint Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Row As Long, ByVal Column As Long, ByRef
State As Boolean) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

State - the variable to receive the result (0 = OFF, 1 = ON)

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_ViewBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

102

Sub-unit Attribute (Visual Basic)

Description

Obtains the value of a sub-unit attribute. These values facilitate operation using
PIL_OpSwitch.

Declaration

Declare Function PIL_SubAttribute Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Out As Boolean, ByVal AttrCode As Long, ByRef
AttrValue As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

AttrCode - a value indicating the sub-unit attribute to be queried, see below

AttrValue - reference to variable to receive the attribute's value

Returns:

Zero for success, or non-zero error code.

Applicable sub-unit types

This function is only usable with MATRIX and MATRIXP sub-units. For further
information about matrix auto-isolation and auto-loopthru features see:
segmented matrix, unsegmented matrix.

AttrCode values

Value Ident Function

1 SUB_ATTR_CHANNEL_SUBSWITCHES Gets number of subswitches per
logical channel (matrix
crosspoint)

2 SUB_ATTR_X_ISO_SUBSWITCHES Gets number of subswitches per
logical X-isolator

3 SUB_ATTR_Y_ISO_SUBSWITCHES Gets number of subswitches per
logical Y-isolator

4 SUB_ATTR_X_LOOPTHRU_SUBSWITCHES Gets number of subswitches per
logical X-loopthru

5 SUB_ATTR_Y_LOOPTHRU_SUBSWITCHES Gets number of subswitches per
logical X-loopthru

6 SUB_ATTR_MATRIXP_TOPOLOGY Gets a code representing
MATRIXP topology (see below)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

103

&H100 SUB_ATTR_NUM_X_SEGMENTS Gets number of X-axis segments

&H101 SUB_ATTR_X_SEGMENT01_SIZE Gets size of X-axis segment 1

&H102 SUB_ATTR_X_SEGMENT02_SIZE Gets size of X-axis segment 2

&H103 SUB_ATTR_X_SEGMENT03_SIZE Gets size of X-axis segment 3

&H104 SUB_ATTR_X_SEGMENT04_SIZE Gets size of X-axis segment 4

&H105 SUB_ATTR_X_SEGMENT05_SIZE Gets size of X-axis segment 5

&H106 SUB_ATTR_X_SEGMENT06_SIZE Gets size of X-axis segment 6

&H107 SUB_ATTR_X_SEGMENT07_SIZE Gets size of X-axis segment 7

&H108 SUB_ATTR_X_SEGMENT08_SIZE Gets size of X-axis segment 8

&H109 SUB_ATTR_X_SEGMENT09_SIZE Gets size of X-axis segment 9

&H10A SUB_ATTR_X_SEGMENT10_SIZE Gets size of X-axis segment 10

&H10B SUB_ATTR_X_SEGMENT11_SIZE Gets size of X-axis segment 11

&H10C SUB_ATTR_X_SEGMENT12_SIZE Gets size of X-axis segment 12

&H200 SUB_ATTR_NUM_Y_SEGMENTS Gets number of Y-axis segments

&H201 SUB_ATTR_Y_SEGMENT01_SIZE Gets size of y-axis segment 1

&H202 SUB_ATTR_Y_SEGMENT02_SIZE Gets size of y-axis segment 2

MATRIXP topology code values

Value Ident Function

0 MATRIXP_NOT_APPLICABLE Sub-unit is not MATRIXP type

1 MATRIXP_RESTRICTIVE_X MATRIXP allowing only one column (X)
connection on any row(Y)

2 MATRIXP_RESTRICTIVE_Y MATRIXP allowing only one row (Y)
connection on any column(X)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

104

Switch Masking

Switch Masking

This section details the use in Visual Basic of switch masking functions.

Masking permits disabling operation of chosen switch channels by functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

These functions report error ER_OUTPUT_MASKED if an attempt is made to
activate a masked channel.

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Masking functions, all switching sub-unit types

• Clear a sub-unit's mask: PIL_ClearMask
• Mask or unmask a single output channel: PIL_MaskBit
• Set a sub-unit's mask pattern: (PIL_WriteMask, PIL_WriteMask_s),

PIL_WriteMaskArray
• Obtain the mask state of a single output channel: PIL_ViewMaskBit
• Obtain a sub-unit's mask pattern: (PIL_ViewMask, PIL_ViewMask_s),

PIL_ViewMaskArray

Masking functions, matrix sub-units

• Mask or unmask a single matrix crosspoint: PIL_MaskCrosspoint
• Obtain the mask state of a single matrix crosspoint:

PIL_ViewMaskCrosspoint

Note

Masking only allows output channels to be disabled in the OFF state; applying a
mask to a channel that is already turned ON forces it OFF.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

105

Clear Mask (Visual Basic)

Description

Clears a sub-unit's switch mask, enabling operation of all outputs by functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

Declaration

Declare Function PIL_ClearMask Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

106

Mask Bit (Visual Basic)

Description

Mask or unmask a single output bit.

Masking disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits. Note that PIL_MaskCrosspoint allows more
straightforward use of row/column co-ordinates with matrices.

Declaration

Declare Function PIL_MaskBit Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByVal BitNum As Long, ByVal Action As Boolean) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

Action - 1 to mask, 0 to unmask

Returns:

Zero for success, or non-zero error code.

Note

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

107

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

108

Mask Crosspoint (Visual Basic)

Description

Mask or unmask a single matrix crosspoint.

Masking disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility is particularly useful to guard against programming errors that could
otherwise result in damage to matrix switches or external circuits.

Declaration

Declare Function PIL_MaskCrosspoint Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Row As Long, ByVal Column As Long, ByVal
Action As Boolean) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

Action - 1 to mask, 0 to unmask

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_MaskBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

109

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

110

View Mask (Visual Basic)

Description

Obtains the switch mask of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Declaration

Declare Function PIL_ViewMask Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByRef Data As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_ViewMask_s. However
although these functions are usable in Visual Basic, PIL_ViewMaskArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

PIL_ViewMask(CardNum, OutSub, Data)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

PIL_ViewMask(CardNum, OutSub, Data(0))

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Warning

The data array referenced must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

111

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

112

View Mask - Native Array (Visual Basic)

Description

Obtains the switch mask of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Declaration

Declare Function PIL_ViewMaskArray Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data() As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

This function must be passed a reference to the data array, for example:

PIL_ViewMaskArray(CardNum, OutSub, Data())

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Example Code

See the description of PIL_WriteSubArray for example code using a safe array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

113

View Mask Bit (Visual Basic)

Description

Obtains the state of an individual output's mask.

Declaration

Declare Function PIL_ViewMaskBit Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal BitNum As Long, ByRef State As Boolean) As
Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

State - the variable to receive the result (0 = unmasked, 1 = masked)

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

114

View Mask Crosspoint (Visual Basic)

Description

Obtains the state of an individual matrix crosspoint's mask.

Declaration

Declare Function PIL_ViewMaskCrosspoint Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal OutSub As Long, ByVal Row As Long, ByVal Column As Long,
ByRef State As Boolean) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

State - the variable to receive the result (0 = unmasked, 1 = masked)

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_ViewMaskBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

115

Write Mask (Visual Basic)

Description

Sets a sub-unit's switch mask to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written into the
mask. A '1' bit in the mask disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Declaration

Declare Function PIL_WriteMask Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) containing the mask
pattern to be set

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_WriteMask_s. However
although these functions are usable in Visual Basic, PIL_WriteMaskArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

116

PIL_WriteMask(CardNum, OutSub, Data)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

PIL_WriteMask(CardNum, OutSub, Data(0))

For a Matrix sub-unit, the mask data is folded into the vector on its row-axis: see
Data Formats.

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Warning

The data array referenced must contain sufficient bits to represent the mask
pattern for the specified sub-unit, or undefined data will be written to the more
significant bits.

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

117

Write Mask - Native Array (Visual Basic)

Description

Sets a sub-unit's switch mask to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written into the
mask. A '1' bit in the mask disables the corresponding switch for functions:

 PIL_OpBit

 PIL_OpCrosspoint

 PIL_WriteSub

 PIL_WriteSub_s

 PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Declaration

Declare Function PIL_WriteMaskArray Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data() As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) containing the mask
pattern to be set

Returns:

Zero for success, or non-zero error code.

Notes

This function must be passed a reference to the data array, for example:

PIL_WriteMaskArray(CardNum, OutSub, Data())

For a Matrix sub-unit, the mask data is folded into the vector on its row-axis: see
Data Formats.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

118

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Example Code

See the description of PIL_WriteSubArray for example code using a safe array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

119

Input

Input

This section details the use in Visual Basic of functions specific to input sub-units.

Specific functions are provided to:

• Obtain the state of a single input: PIL_ReadBit
• Obtain a sub-unit's input pattern: PIL_ReadSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

120

Read Bit (Visual Basic)

Description

Obtains the state of an individual input.

Declaration

Declare Function PIL_ReadBit Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
InSub As Long, ByVal BitNum As Long, ByRef State As Boolean) As Long

Parameters:

CardNum - card number

InSub - input sub-unit number

BitNum - input bit number

State - the variable to receive the result (0 = logic '0', 1 = logic '1')

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

121

Read Sub-unit (Visual Basic)

Description

Obtains the current state of all inputs of a sub-unit.

Declaration

Declare Function PIL_ReadSub Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
InSub As Long, ByRef Data As Long) As Long

Parameters:

CardNum - card number

InSub - input sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_ReadSub_s.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

PIL_ReadSub(CardNum, OutSub, Data)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array. For example, assuming a zero-based array:

PIL_ReadSub(CardNum, OutSub, Data(0))

Warning

The Data object referenced must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

122

Calibration

Calibration

This section details the use in Visual Basic of functions associated with storing
calibration values in a card's non-volatile memory. This facility is only available
for certain sub-unit types, such as programmable resistors; either integer data
(for simple types) or floating-point data (for precision types) may be supported.

Specific functions are provided to:

• Retrieve an integer calibration value from non-volatile memory:
PIL_ReadCal

• Store an integer calibration value in non-volatile memory: PIL_WriteCal
• Retrieve floating-point calibration value(s) from non-volatile memory:

PIL_ReadCalFP
• Store floating-point calibration value(s) in non-volatile memory:

PIL_WriteCalFP
• Retrieve a sub-unit's calibration date from non-volatile memory:

PIL_ReadCalDate
• Store a sub-unit's calibration date in non-volatile memory:

PIL_WriteCalDate
• Set a calibration point: PIL_SetCalPoint

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

123

Read Integer Calibration Value (Visual Basic)

Description

Reads an integer calibration value from on-card EEPROM.

Declaration

Declare Function PIL_ReadCal Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByVal Idx As Long, ByRef Data As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Idx - calibration value index number (see below)

Data - reference to variable to receive result

Returns:

Zero for success, or non-zero error code.

Notes

This function is usable only with sub-units that support integer calibration data.

In simple programmable resistor models such as:

40-280

40-281

40-282

40-290

40-291

40-295

40-296

50-295

the Pilpxi driver places no interpretation on the stored value - an application
program can utilise it in any way it wishes.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

124

In some other models, including:

41-735-001

41-752-001

stored values are utilised by specific Pilpxi driver functions, and they should only
be overwritten by an appropriate calibration utility.

For programmable resistors supporting this function the valid range of Idx values
corresponds to the number of bits, i.e. to the range of output bit number values.
A 16-bit resistor sub-unit typically provides 16 x 16-bit values.

The storage capacity of other types supporting this feature is determined by their
functionality.

Related functions

PIL_WriteCal

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

125

Read Calibration Date (Visual Basic)

Description

Reads a sub-unit's calibration date and interval from on-card EEPROM.

Declaration

Declare Function PIL_ReadCalDate Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Store As Long, ByRef Year As Long, ByRef Day
As Long, ByRef Interval As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Year - reference to variable to receive the year of calibration

Day - reference to variable to receive the day in the year of calibration

Interval - reference to variable to receive the calibration interval (in days)

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data; it can be used to discover when the sub-unit was last calibrated, and when
recalibration will become due. Bit STAT_CALIBRATION_DUE in the result of
PIL_Status or PIL_SubStatus indicates the need for recalibration.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Related functions

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

126

PIL_WriteCalDate

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

127

Read Floating-point Calibration Value (Visual Basic)

Description

Reads one or more floating-point calibration values from on-card EEPROM.

Declaration

Declare Function PIL_ReadCalFP Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Store As Long, ByVal Offset As Long, ByVal
NumValues As Long, ByRef Data As Double) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Offset - the offset in the sub-unit's calibration store at which to start

NumValues - the number of values to be read

Data - reference to array to receive result

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of values stored and their purpose is specific
to the target sub-unit.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

128

Related functions

PIL_WriteCalFP

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

129

Set Calibration Point (Visual Basic)

Description

Sets a sub-unit to a state corresponding to one of its defined calibration points.

Declaration

Declare Function PIL_SetCalPoint Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Idx As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Idx - the index number of the calibration point (see below)

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of calibration points supported is specific to
the target sub-unit.

The Idx value used by this function corresponds directly to the offset in the sub-
unit's calibration store at which the value is to be stored and retrieved, using
PIL_WriteCalFP and PIL_ReadCalFP.

WARNING

Selection of a calibration point causes the sub-unit to change state; the resulting
state may be outside its normally desired range of operation. On completion of a
calibration sequence, PIL_ResSetResistance can be used to normalise the setting.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

130

Write Integer Calibration Value (Visual Basic)

Description

Writes an integer calibration value to on-card EEPROM.

Declaration

Declare Function PIL_WriteCal Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
OutSub As Long, ByVal Idx As Long, ByVal Data As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Idx - calibration value index number (see below)

Data - the value to be written

Returns:

Zero for success, or non-zero error code.

Notes

This function is usable only with sub-units that support integer calibration data.

In simple programmable resistor models such as:

40-280

40-281

40-282

40-290

40-291

40-295

40-296

50-295

the Pilpxi driver places no interpretation on the stored value - an application
program can utilise it in any way it wishes.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

131

In some other models, including:

41-735-001

41-752-001

stored values are utilised by specific Pilpxi driver functions, and they should only
be overwritten by an appropriate calibration utility.

The number of bits actually stored is specific to the target sub-unit - any
redundant high-order bits of the supplied Data value are ignored.

For programmable resistors supporting this function the valid range of Idx values
corresponds to the number of bits, i.e. to the range of output bit number values.
A 16-bit resistor sub-unit typically provides 16 x 16-bit values.

The storage capacity of other types supporting this feature is determined by their
functionality.

Related functions

PIL_ReadCal

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

132

Write Calibration Date (Visual Basic)

Description

Writes a sub-unit's calibration date and interval into on-card EEPROM. Date
information is obtained from the current system date.

Declaration

Declare Function PIL_WriteCalDate Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Store As Long, ByVal Interval As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Interval - the desired calibration interval (in days)

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of values stored and their purpose is specific
to the target sub-unit.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Related functions

PIL_ReadCalDate

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

133

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

134

Write Floating-point Calibration Value (Visual Basic)

Description

Writes one or more floating-point calibration values into on-card EEPROM.

Declaration

Declare Function PIL_WriteCalFP Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByVal Store As Long, ByVal Offset As Long, ByVal
NumValues As Long, ByRef Data As Double) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Offset - the offset in the sub-unit's calibration store at which to start

NumValues - the number of values to be written

Data - reference to array containing values to write

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of values stored and their purpose is specific
to the target sub-unit.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

135

WARNING

Writing new values will affect the sub-unit's calibration.

Related functions

PIL_ReadCalFP

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

136

Programmable Resistor

Programmable Resistor

This section details the use in Visual Basic of functions specific to programmable
resistor sub-units.

Detailed information about a programmable resistor sub-unit, if available, can be
obtained using function PIL_ResInfo.

Precision models

Precision programmable resistor models such as 40-260-001 are supported by
functions:

• PIL_ResGetResistance
• PIL_ResSetResistance

which allow chosen resistance values to be set.

Simple models

In models not supported by the above functions general purpose output functions
such as PIL_WriteSubArray must be used to program resistance values by setting
bit-patterns explicitly.

Models 40-280, 40-281 and 40-282 are configured as simple resistor/switch
arrays and programming should be straightforward.

In models employing a series resistor chain - such as 40-290, 40-291, 40-292
and 40-295 - each of a card's programmable resistors is implemented as a
separate logical sub-unit constructed from a series chain of individual fixed
resistor elements, each element having an associated shorting switch. In the
cleared state all switches are open, giving the programmable resistor its
maximum value. A nominal value of zero ohms is obtained by turning all switches
ON; other values by turning on an appropriate pattern of switches.

In standard models the individual fixed resistors are arranged in a binary
sequence, the least significant bit of the least significant element in the array
passed to PIL_WriteSubArray corresponding to the lowest value resistor element.
For example, in a standard model 40-290 16-bit resistor of 32768 ohms:

Data(0) bit 0 (value &H1) corresponds to the 0R5 resistor element

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

137

Data(0) bit 1 (value &H2) corresponds to the 1R0 resistor element

thru...

Data(0) bit 15 (value &H8000) corresponds to the 16384R resistor element

Setting a nominal value of 68 ohms (= 64 + 4 ohms) therefore requires Data(0)
set to &HFF77 (the inverse of the binary pattern 0000 0000 1000 1000).

Special models may have some other arrangement, and may also include a fixed
offset resistor that is permanently in circuit.

Non-volatile storage of calibration values is supported through the functions
PIL_ReadCal and PIL_WriteCal.

See the application note on Simple Programmable Resistor Cards.

Summary of functions for normal operation of "Programmable Resistor"
cards

Model(s) Class Functions
PIL_ResSetResistance
PIL_ResGetResistance

40-260-001 Precision

PIL_ReadCalDate
PIL_WriteSubArray 40-260-999 Precision
PIL_ViewSubArray
PIL_ResSetResistance
PIL_ResGetResistance

40-261 Precision

PIL_ReadCalDate
PIL_ResSetResistance
PIL_ResGetResistance

40-262 Precision

PIL_ReadCalDate
PIL_ResSetResistance
PIL_ResGetResistance

40-265 Precision

PIL_ReadCalDate
PIL_OpBit
PIL_ViewBit
PIL_WriteSubArray
PIL_ViewSubArray
PIL_ReadCal

40-280, 40-281,
40-282

Simple

PIL_WriteCal
PIL_WriteSubArray
PIL_ViewSubArray
PIL_ReadCal

40-290, 40-291,
40-292

Simple

PIL_WriteCal
PIL_WriteSubArray 40-295 Simple
PIL_ViewSubArray

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

138

PIL_ReadCal
PIL_WriteCal
PIL_WriteSubArray
PIL_ViewSubArray
PIL_ReadCal

40-296 Simple

PIL_WriteCal
PIL_ResSetResistance
PIL_ResGetResistance

40-297 Precision

PIL_ReadCalDate
PIL_WriteSubArray
PIL_ViewSubArray
PIL_ReadCal

50-295 Simple

PIL_WriteCal
PIL_ResSetResistance
PIL_ResGetResistance

50-297 Precision

PIL_ReadCalDate
...

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

139

Get Resistance Value (Visual Basic)

Description

Obtains the current resistance setting of the specified programmable resistor.
This function is only usable with programmable resistor models that support it:
such capability is indicated in the result of PIL_ResInfo.

The value obtained for a resistance setting of infinity, if the sub-unit permits this,
is HUGE_VAL.

Declaration

Declare Function PIL_ResGetResistance Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal OutSub As Long, ByRef Resistance As Double) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Resistance - reference to variable to receive the result

Returns:

Zero for success, or non-zero error code.

Related functions

PIL_ResInfo

PIL_ResSetResistance

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

140

Resistor information (Visual Basic)

Description

Obtains detailed information on a programmable resistor sub-unit.

Declaration

Declare Function PIL_ResInfo Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByRef MinRes As Double, ByRef MaxRes As Double, ByRef
RefRes As Double, ByRef PrecPC As Double, ByRef PrecDelta As Double, ByRef
Int1 As Double, ByRef IntDelta As Double, ByRef Capabilities As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

MinRes - reference to variable to receive minimum resistance setting

MaxRes - reference to variable to receive maximum resistance setting

RefRes - reference to variable to receive reference resistance value

PrecPC - reference to variable to receive percentage precision value

PrecDelta - reference to variable to receive offset precision, in ohms

Int1 - reference to (currently unused) variable

IntDelta - reference to variable to receive internal precision, in ohms

Capabilities - reference to variable to receive capability flags (see below)

Returns:

Zero for success, or non-zero error code.

Capabilities Bit Flag Definitions

Capability bits are as follows:

&H00000008 - RES_CAP_REF (supports reference calibration value)

&H00000004 - RES_CAP_INF (supports setting "open-circuit")

&H00000002 - RES_CAP_ZERO (supports setting "zero ohms")

&H00000001 - RES_CAP_PREC (precision resistor - supporting function
PIL_ResSetResistance etc.)

&H00000000 - RES_CAP_NONE (no special capabilities)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

141

Corresponding global constants are provided in Pilpxi.bas.

Notes

MinRes and MaxRes are the minimum and maximum values that can be set in the
sub-unit's continuous range of adjustment. If capability RES_CAP_ZERO is
flagged a setting of "zero ohms" is also possible. If RES_CAP_INF is flagged an
open-circuit setting is also possible.

If capability RES_CAP_REF is flagged, RefRes is the reference resistance value -
 such as in model 40-265, where it gives the balanced state resistance.

PrecPC and PrecDelta represent the sub-unit's precision specification, such as
(±0.2%, ±0.1 ohms).

IntDelta is the notional precision to which the sub-unit works internally; this value
will be less than or equal to the figure indicated by PrecPC and PrecDelta,
indicating greater internal precision.

Where information is not available for the sub-unit concerned, null values are
returned.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

142

Set Resistance Value (Visual Basic)

Description

Sets a programmable resistor to the closest available setting to the value
specified. This function is only usable with programmable resistor models that
support it: such capability is indicated in the result of PIL_ResInfo.

If the sub-unit permits, the resistance value can be set to:

• zero ohms (nominally), by passing the resistance value 0.0
• infinity, using function PIL_ClearSub

The resistance value actually set can be found using PIL_ResGetResistance.

Declaration

Declare Function PIL_ResSetResistance Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal OutSub As Long, ByVal Mode As Long, ByVal Resistance As
Double) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Mode - the resistance setting mode (see below)

Resistance - the resistance value

Returns:

Zero for success, or non-zero error code.

Mode value

A value indicating how the given resistance value is to be applied. Only one mode
is currently supported:

Value Ident Function

0 RES_MODE_SET Set resistance to the specified value

Note

In programmable resistor models having gapped ranges, resistance values falling
within such gaps are not coerced. For example, in a unit supporting settings:

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

143

• zero ohms
• 100 - 200 ohms continuously variable
• infinity

attempting to set values above zero but below 100 ohms, or above 200 ohms but
less than infinity, gives error ER_BAD_RESISTANCE.

Related functions

PIL_ResInfo

PIL_ResGetResistance

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

144

Programmable Potentiometer

Programmable Potentiometer

This section details the use in Visual Basic of functions specific to programmable
potentiometer sub-units.

No potentiometer-specific functions are currently provided.

A potentiometer such as model 40-296 is represented logically as a
programmable resistor (RES type) having twice the number of switched bits as its
nominal resolution, i.e. a 24-bit potentiometer returns the type description
RES(48). To make the unit behave correctly appropriate bit-patterns must be set
in the upper and lower halves using general purpose output function
PIL_WriteSubArray (or PIL_WriteSub). Transient effects must be expected when
changing the wiper position; provided MODE_NO_WAIT is not in force resistance
values can only be transiently high.

Note that a potentiometer's state at power-up and when cleared is as a device of
twice the nominal resistance with its wiper centred.

WARNING

Mis-programming can result in the potentiometer presenting a lower than normal
resistance between its end terminals - in the worst case zero ohms.

Non-volatile (EEPROM) storage of calibration values is supported through the
functions PIL_ReadCal and PIL_WriteCal.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

145

Programmable RF Attenuator

Programmable RF Attenuator

This section details the use in Visual Basic of functions specific to programmable
RF attenuator sub-units.

Specific functions are provided to:

• Obtain attenuator information, in numeric format: PIL_AttenInfo
• Obtain attenuator description, in string format: PIL_AttenType
• Set an attenuation level, in dB: PIL_AttenSetAttenuation
• Obtain the current attenuation setting, in dB: PIL_AttenGetAttenuation
• Obtain the value of each individual attenuator pad, in dB:

PIL_AttenPadValue

RF attenuator sub-units can also be controlled using general purpose output
functions such as PIL_WriteSubArray. This allows the explicit selection of
particular pad patterns that may in some circumstances yield improved RF
performance.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

146

Get attenuation (Visual Basic)

Description

Obtains the current attenuation setting.

Declaration

Declare Function PIL_AttenGetAttenuation Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByRef Atten As Single) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Atten - reference to variable to receive the attenuation value, in dB

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

147

Attenuator information (Visual Basic)

Description

Obtains a description of an attenuator sub-unit, as numeric values.

Declaration

Declare Function PIL_AttenInfo Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByRef TypeNum As Long, ByRef NumSteps As Long, ByRef
StepSize As Single) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

TypeNum - reference to variable to receive type code

NumSteps - reference to variable to receive step count

StepSize - reference to variable to receive step size, in dB

Returns:

Zero for success, or non-zero error code.

Results

RF attenuator sub-unit type code is:

8 - TYPE_ATTEN (programmable RF attenuator)

A corresponding global constant is provided in Pilpxi.bas.

Note

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads in the attenuator can be obtained using
PIL_SubInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

148

Attenuator pad value (Visual Basic)

Description

Obtains the attenuation value of a numbered pad.

Declaration

Declare Function PIL_AttenPadValue Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal PadNum As Long, ByRef Atten As Single) As
Long

Parameters:

CardNum - card number

SubNum - sub-unit number

PadNum - pad number

Atten - reference to variable to receive the pad's attenuation value, in dB

Returns:

Zero for success, or non-zero error code.

Note

This function facilitates explicit pad selection using PIL_OpBit or
PIL_WriteSubArray, if the selections made by PIL_AttenSetAttenuation are not
optimal for the application.

The number of pads in the sub-unit can be found using PIL_SubInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

149

Set attenuation (Visual Basic)

Description

Sets the attenuation to the specified value.

Declaration

Declare Function PIL_AttenSetAttenuation Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByVal Atten As Single) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Atten - the attenuation value to set, in dB

Returns:

Zero for success, or non-zero error code.

Note

The combination of pads inserted to achieve the desired attenuation level is
determined by the driver for best all-round performance. In some models it may
be possible to optimise particular aspects of attenuator performance by setting
other pad combinations explicitly using PIL_OpBit or PIL_WriteSubArray. The pad
value associated with each output channel can be discovered with
PIL_AttenPadValue.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

150

Attenuator type (Visual Basic)

Description

Obtains a description of an attenuator sub-unit, as a text string.

Declaration

Declare Function PIL_AttenType Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByVal Str As String) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - reference to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Result

The format of the result is "ATTEN(<number of steps>,<step size in dB>)".

Notes

A more secure version of this function exists as PIL_AttenType_s.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_ATTEN_TYPE_STR.

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads employed in the attenuator can be
obtained using PIL_SubType.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

151

Power Supplies

Power Supply functions

This section details the use in Visual Basic of functions specific to power supply
sub-units.

Specific functions are provided to:

• Obtain power supply description, in string format: PIL_PsuType
• Obtain power supply information, in numeric format: PIL_PsuInfo
• Set power supply output voltage: PIL_PsuSetVoltage
• Obtain a power supply's current voltage setting: PIL_PsuGetVoltage
• Enable/disable a power supply's output: PIL_PsuEnable

Other functions that are relevant to operation of power supply sub-units include:

• Clear a power supply (restore start-up state): PIL_ClearSub
• Obtain power supply status information: PIL_SubStatus
• Retrieve a calibration value from non-volatile memory (some models):

PIL_ReadCal
• Store a calibration value in non-volatile memory (some models):

PIL_WriteCal

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

152

Power Supply - enable/disable output (Visual Basic)

Description

Enables or disables a power supply's output.

Declaration

Declare Function PIL_PsuEnable Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByVal State As Boolean) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

State - 1 to enable, 0 to disable output

Returns:

Zero for success, or non-zero error code.

Note

This function is usable only with sub-units having the capability
PSU_CAP_OUTPUT_CONTROL - see PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

153

Power Supply - Get Voltage (Visual Basic)

Description

Obtains the voltage setting of a power supply sub-unit.

Declaration

Declare Function PIL_PsuGetVoltage Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByRef Voltage As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - reference to variable to receive the output setting, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which may be affected by device tolerances,
current-limit conditions etc.).

This function is also usable with fixed-voltage supplies, returning the nominal
output voltage.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

154

Power Supply - Information (Visual Basic)

Description

Obtains a description of a power supply sub-unit, as numeric values.

Declaration

Declare Function PIL_PsuInfo Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByRef TypeNum As Long, ByRef Voltage As Double, ByRef
Current As Double, ByRef Precis As Long, ByRef Capabilities As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

TypeNum - reference to variable to receive type code

Voltage - reference to variable to receive rated voltage (in Volts)

Current - reference to variable to receive rated current (in Amps)

Precis - reference to variable to receive precision (in bits, meaningful only for
programmable supplies)

Capabilities - reference to variable to receive capability flags (see below)

Returns:

Zero for success, or non-zero error code.

Results

Power supply sub-unit type code is:

9 - TYPE_PSUDC (DC power supply)

A corresponding global constant is provided in Pilpxi.bas.

Capability flag bit definitions:

&H00000010 - PSU_CAP_CURRENT_MODE_SENSE (can sense if operating in
current-limited mode)

&H00000008 - PSU_CAP_PROG_CURRENT (output current is programmable)

&H00000004 - PSU_CAP_PROG_VOLTAGE (output voltage is programmable)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

155

&H00000002 - PSU_CAP_OUTPUT_SENSE (has logic-level sensing of output
active state)

&H00000001 - PSU_CAP_OUTPUT_CONTROL (has output on/off control)

Certain driver functions are only usable with sub-units having appropriate
capabilities - examples being:

PIL_PsuEnable

PIL_PsuSetVoltage

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

156

Power Supply - Set Voltage (Visual Basic)

Description

Sets the output voltage of a power supply sub-unit to the specified value.

Declaration

Declare Function PIL_PsuSetVoltage Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Voltage As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - the output voltage to set, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The voltage value specified is rounded to the precision of the supply's DAC. The
actual voltage setting can be obtained using PIL_PsuGetVoltage.

This function is usable only with sub-units having the capability
PSU_CAP_PROG_VOLTAGE - see PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

157

Power Supply - Type (Visual Basic)

Description

Obtains a description of a power supply sub-unit, as a text string.

Declaration

Declare Function PIL_PsuType Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
SubNum As Long, ByVal Str As String) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - reference to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Result

For a DC power supply the format of the result is "PSUDC(<rated
voltage>,<rated current>)".

Notes

A more secure version of this function exists as PIL_PsuType_s.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_PSU_TYPE_STR.

More detailed information on power supply characteristics is obtainable in numeric
format, using PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

158

Battery Simulator

Battery Simulator

This section details the use in Visual Basic of functions specific to battery
simulator models.

Models 41-750-001 and 41-751-001

No special-purpose functions are implemented for these models - they are
operable using general-purpose input-output functions. See:

40-750-001

40-751-001

Model 41-752-001

Model 41-752-001 is implemented as an array of BATT sub-units, employing the
following special-purpose functions for normal operation:

• Set output voltage: PIL_BattSetVoltage
• Obtain the present output voltage setting: PIL_BattGetVoltage
• Set sink current: PIL_BattSetCurrent
• Obtain the present sink current setting: PIL_BattGetCurrent
• Set output enable states: PIL_BattSetEnable
• Obtain present output enable states: PIL_BattGetEnable
• Obtain the present state of the hardware interlock:

PIL_BattReadInterlockState

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

159

Battery Simulator - set voltage (Visual Basic)

Description

Sets the output voltage of battery simulator (BATT type) sub-units.

Declaration

Declare Function PIL_BattSetVoltage Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Voltage As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - the output voltage to set, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function sets the voltage of
that sub-unit alone.

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), all of the card's BATT sub-units
are set to the given voltage.

The voltage value specified is rounded to the precision of the sub-unit's DAC. The
actual voltage setting can be obtained using PIL_BattGetVoltage.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

160

Battery Simulator - get voltage (Visual Basic)

Description

Obtains the voltage setting of a battery simulator (BATT type) sub-unit, as set by
PIL_BattSetVoltage.

Declaration

Declare Function PIL_BattGetVoltage Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByRef Voltage As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - reference to variable to receive the output setting, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which could be affected by conditions such as
current-limiting).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

161

Battery Simulator - set current (Visual Basic)

Description

Sets the output sink current of battery simulator (BATT type) sub-units.

Declaration

Declare Function PIL_BattSetCurrent Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Current As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Current - the output sink current to set, in Amps

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function sets the sink current
of that sub-unit alone.

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), all of the card's BATT sub-units
are set to the given current.

For non-zero values, output sink current is set to the nearest available value
greater than that specified, typically using a low-precision DAC (e.g. 4-bit). The
actual sink current setting can be obtained using PIL_BattGetCurrent.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

162

Battery Simulator - get current (Visual Basic)

Description

Obtains the current sink setting of a battery simulator (BATT type) sub-unit, as
set by PIL_BattSetCurrent.

Declaration

Declare Function PIL_BattGetCurrent Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByRef Current As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Current - reference to variable to receive the output setting, in Amps

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

163

Battery Simulator - set enable (Visual Basic)

Description

Sets the output enable pattern of battery simulator (BATT type) sub-units.

Declaration

Declare Function PIL_BattSetEnable Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Pattern As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - the pattern of output enables to set

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function sets the output
enable state of that sub-unit alone according to the least significant bit of Pattern
(0 = OFF, 1 = ON).

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), enable states of all the card's
BATT sub-units are set; bits in the supplied Pattern are utilised in ascending order
of BATT sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered BATT sub-unit (0 = OFF, 1 =
ON)

Pattern bit 1 = enable state of next numbered BATT sub-unit (0 = OFF, 1 =
ON)

etc.

Note that the operation can fail (returning ER_EXECUTION_FAIL) if a necessary
hardware interlock is disconnected.

The present enable pattern can be obtained using PIL_BattGetEnable.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

164

Battery Simulator - get enable (Visual Basic)

Description

Obtains the output enable pattern of battery simulator (BATT type) sub-units.

Declaration

Declare Function PIL_BattGetEnable Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByRef Pattern As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - reference to variable to receive the output enable pattern

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function gets the output
enable state of that sub-unit alone in the least significant bit of Pattern (0 = OFF,
1 = ON).

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), enable states of all the card's
BATT sub-units are obtained; bits in Pattern are assigned in ascending order of
BATT sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered BATT sub-unit (0 = OFF, 1 =
ON)

Pattern bit 1 = enable state of next numbered BATT sub-unit (0 = OFF, 1 =
ON)

etc.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

165

Battery Simulator - read interlock state (Visual Basic)

Description

Obtains the present state of a hardware interlock associated with battery
simulator (BATT type) sub-units.

Declaration

Declare Function PIL_BattReadInterlockState Lib "Pilpxi.dll" (ByVal CardNum
As Long, ByVal SubNum As Long, ByRef Interlock As Boolean) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Interlock - reference to variable to receive the interlock state

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function gets the state of the
hardware interlock associated with that sub-unit:

0 = interlock is "down"

1 = interlock is "up"

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), the function gets the summary
state of all BATT sub-unit interlocks :

0 = one or more interlocks is "down"

1 = all interlocks are "up"

Model 41-752-001 has a single global interlock affecting all channels, and both
modes above yield the same result.

Interlock "up" state is hardware-latched from the physical wired interlock by the
action of PIL_BattSetEnable, when that function succeeds. Hence:

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

166

• If the "up" state is indicated, the physical interlock has remained intact
and outputs are enabled as previously set by PIL_BattSetEnable.

• If the "down" state is indicated, the physical interlock has been broken
and all outputs will have been disabled automatically through hardware.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

167

Thermocouple Simulator

Thermocouple Simulator

This section details the use in Visual Basic of functions specific to thermocouple
simulator models.

Thermocouple simulators are implemented as an array of VSOURCE sub-units,
employing the following special-purpose functions for normal operation:

• Set output voltage range: PIL_VsourceSetRange
• Obtain the present output range selection: PIL_VsourceGetRange
• Set output voltage: PIL_VsourceSetVoltage
• Obtain the present output voltage setting: PIL_VsourceGetVoltage
• Set output enable states: PIL_VsourceSetEnable
• Obtain present output enable states: PIL_VsourceGetEnable

The following standard functions are used to operate the monitoring multiplexer:

• Disconnect all channels: PIL_ClearSub
• Connect/disconnect a channel: PIL_OpBit
• Obtain the present channel selection: PIL_ViewSubArray

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

168

Voltage source - set range (Visual Basic)

Description

Selects the output voltage range of voltage source (VSOURCE type) sub-units
that have this capability.

Declaration

Declare Function PIL_VsourceSetRange Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByVal Range As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Range - the output voltage range to select, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

Only positive range values are currently accepted, irrespective of whether the
sub-unit has positive voltage, negative voltage, or bipolar capability.

For a valid range selection the supplied range value must be acceptably close to a
range supported by the sub-unit.

The present range selection can be obtained using PIL_VsourceGetRange.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

169

Voltage source - get range (Visual Basic)

Description

Obtains the range setting of a voltage source (VSOURCE type) sub-unit, as set by
PIL_VsourceSetRange.

Declaration

Declare Function PIL_VsourceGetRange Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByRef Range As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Range - reference to variable to receive the output range setting, in Volts

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

170

Voltage source - set voltage (Visual Basic)

Description

Sets the output voltage of voltage source (VSOURCE type) sub-units.

Declaration

Declare Function PIL_VsourceSetVoltage Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByVal Voltage As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - the output voltage to set, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The voltage value specified is rounded to the precision of the sub-unit's DAC. The
actual voltage setting can be obtained using PIL_VsourceGetVoltage.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

171

Voltage source - get voltage (Visual Basic)

Description

Obtains the output setting of a voltage source (VSOURCE type) sub-unit, as set
by PIL_VsourceSetVoltage.

Declaration

Declare Function PIL_VsourceGetVoltage Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByRef Voltage As Double) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - reference to variable to receive the output setting, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which could be affected by conditions such as
current-limiting).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

172

Voltage source - set enable (Visual Basic)

Description

Sets the output enable pattern of voltage source (VSOURCE type) sub-units.

Declaration

Declare Function PIL_VsourceSetEnable Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByVal Pattern As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - the pattern of output enables to set

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a VSOURCE sub-unit, the function sets the output
enable state of that sub-unit alone according to the least significant bit of Pattern
(0 = OFF, 1 = ON).

If SubNum = 0 (VSOURCE_ALL_VSOURCE_SUB_UNITS), enable states of all the
card's VSOURCE sub-units are set; bits in the supplied Pattern are utilised in
ascending order of VSOURCE sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered VSOURCE sub-unit (0 = OFF,
1 = ON)

Pattern bit 1 = enable state of next numbered VSOURCE sub-unit (0 = OFF, 1
= ON)

etc.

The present enable pattern can be obtained using PIL_VsourceGetEnable.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

173

Voltage source - get enable (Visual Basic)

Description

Obtains the output enable pattern of voltage source (VSOURCE type) sub-units,
as set by PIL_VsourceSetEnable.

Declaration

Declare Function PIL_VsourceGetEnable Lib "Pilpxi.dll" (ByVal CardNum As
Long, ByVal SubNum As Long, ByRef Pattern As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - reference to variable to receive the output enable pattern

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a VSOURCE sub-unit, the function gets the output
enable state of that sub-unit alone in the least significant bit of Pattern (0 = OFF,
1 = ON).

If SubNum = 0 (VSOURCE_ALL_VSOURCE_SUB_UNITS), enable states of all the
card's VSOURCE sub-units are obtained; bits in Pattern are assigned in ascending
order of VSOURCE sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered VSOURCE sub-unit (0 = OFF,
1 = ON)

Pattern bit 1 = enable state of next numbered VSOURCE sub-unit (0 = OFF, 1
= ON)

etc.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

174

Mode Control

Mode Control

This section details the use in Visual Basic of functions controlling the driver's
operation.

This feature is implemented through a single function: PIL_SetMode.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

175

Set Mode (Visual Basic)

Description

Allows control flags affecting the driver's global behaviour to be set and read. This
function gives access to low-level control features of the Pilpxi driver and is
intended for 'expert' use only - the default driver behaviour should be satisfactory
for the great majority of applications.

Declaration

Declare Function PIL_SetMode Lib "Pilpxi.dll" (ByVal ModeFlags As Long) As
Long

Parameters:

ModeFlags - new value for driver mode flags

Returns:

The driver's mode flags prior to executing this function.

Flag Bit Definitions

Flag bits are as follows:

&H00000000 - MODE_DEFAULT (standard operating mode)

&H00000001 - MODE_NO_WAIT (sequencing and settling time delays
disabled)

&H00000002 - MODE_UNLIMITED (closure limits disabled - see Warning
below)

&H00000004 - MODE_REOPEN (allow re-opening without clearing cards)

&H00000008 - MODE_IGNORE_TEST (enable card operation even if selftest
fails - see Warning below)

Corresponding global constants are provided in Pilpxi.bas.

Warning - MODE_UNLIMITED

Use of MODE_UNLIMITED to disable the limit on the maximum number of switch
closures permitted on high-density cards is not recommended, because it carries
the danger of overheating and consequent damage to both the card itself and the
system in which it is installed. See Closure Limits.

Warning - MODE_IGNORE_TEST

The MODE_IGNORE_TEST feature should be used with extreme caution. If a
defective card is forcibly enabled, under some fault conditions a large number of
outputs could be energised spuriously, resulting in overheating and consequent
damage to both the card itself and the system in which it is installed. The

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

176

intended purpose of this feature is to allow continued operation of a BRIC unit
from which a daughtercard has been removed for maintenance. See BRIC
Operation.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

177

Visual C++

Visual C++

The following files are provided for Visual C++:

• Pilpxi.h
• Pilpxi.lib
• Pilpxi.dll

For implicit linking (the simplest method), Pilpxi.h and Pilpxi.lib must be
accessible by Visual C++ at compile-time. Typically, copies of these files can be
placed in the folder containing your application's source files; alternatively your
Visual C++ project may be configured to access them in their installed location
(or some other centralized location).

For explicit linking Pilpxi.lib is not required. Information on techniques for explicit
linking can be found in MSDN reference. Another technique is "delay loading",
again referenced in MSDN. These methods permit better error handling (within
the application, instead of generating a system error dialog) for example if
Pilpxi.dll cannot be accessed, or is an out-of-date version missing some vital
function.

Pilpxi.dll must be accessible by your application at run-time. Windows searches a
number of standard locations for DLLs in the following order:

1. The directory containing the executable module.
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories listed in the PATH environment variable.

Placing Pilpxi.dll in one of the Windows directories has the advantage that a single
copy serves any number of applications that use it, but does add to the clutter of
system DLLs stored there. The Pickering Setup program places a copy of Pilpxi.dll
in the Windows system directory.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

178

Visual C++ Function Tree

Initialise

Initialise all cards PIL_OpenCards

Initialise single card PIL_OpenSpecifiedCard

Close

Close all cards PIL_CloseCards

Close single card PIL_CloseSpecifiedCard

Card Information and Status

PIL_CardId Get card identification

PIL_CardId_s

Get card location PIL_CardLoc

Get sub-unit closure limit PIL_ClosureLimit

Get count of unopened cards PIL_CountFreeCards

PIL_Diagnostic Get diagnostic information

PIL_Diagnostic_s

Get sub-unit counts PIL_EnumerateSubs

PIL_ErrorMessage Get description of an error

PIL_ErrorMessage_s

Get locations of unopened cards PIL_FindFreeCards

Get sub-unit settling time PIL_SettleTime

Get card status PIL_Status

Get sub-unit information PIL_SubInfo

Get sub-unit status PIL_SubStatus

PIL_SubType Get sub-unit description

PIL_SubType_s

Get driver version PIL_Version

Switching and General Purpose Output

Clear outputs of all open cards PIL_ClearAll

Clear a single card's outputs PIL_ClearCard

Clear a sub-unit's outputs PIL_ClearSub

Set or clear a single output PIL_OpBit

Get a single output's state PIL_ViewBit

PIL_ViewSub

PIL_ViewSub_s

Get a sub-unit's output pattern

PIL_ViewSubArray

PIL_WriteSub

PIL_WriteSub_s

Set a sub-unit's output pattern

PIL_WriteSubArray

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

179

Specialised Switching

Set or clear a matrix crosspoint PIL_OpCrosspoint

Obtain/set the state of a switch PIL_OpSwitch

Get sub-unit attribute PIL_SubAttribute

Get a matrix crosspoint's state PIL_ViewCrosspoint

Switch Masking

Clear a sub-unit's mask PIL_ClearMask

Set or clear a single output's mask PIL_MaskBit

Set or clear a matrix crosspoint's mask PIL_MaskCrosspoint

PIL_ViewMask

PIL_ViewMask_s

Get a sub-unit's mask pattern

PIL_ViewMaskArray

Get a single output's mask state PIL_ViewMaskBit

Get a matrix crosspoint's mask state PIL_ViewMaskCrosspoint

PIL_WriteMask

PIL_WriteMask_s

Set a sub-unit's mask pattern

PIL_WriteMaskArray

Input

Read single input
PIL_ReadBit

PIL_ReadSub Read input sub-unit pattern

PIL_ReadSub_s

Calibration

Read an integer calibration value PIL_ReadCal

Read a sub-unit's calibration data PIL_ReadCalDate

Read floating-point calibration value(s) PIL_ReadCalFP

Set Calibration Point PIL_SetCalPoint

Write an integer calibration value PIL_WriteCal

Write a sub-unit's calibration date PIL_WriteCalDate

Write floating-point calibration value(s) PIL_WriteCalFP

Programmable Resistor

Get resistance value PIL_ResGetResistance

Get resistor information PIL_ResInfo

Set resistance value PIL_ResSetResistance

Programmable RF Attenuator

Get attenuation setting PIL_AttenGetAttenuation

Get attenuator information PIL_AttenInfo

Get the attenuation of a pad PIL_AttenPadValue

Set attenuation level PIL_AttenSetAttenuation

Get attenuator description PIL_AttenType

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

180

 PIL_AttenType_s

Power Supplies

Enable/disable output PIL_PsuEnable

Get output voltage setting PIL_PsuGetVoltage

Get PSU information PIL_PsuInfo

Set output voltage PIL_PsuSetVoltage

PIL_PsuType Get PSU description

PIL_PsuType_s

Battery Simulator

Set voltage PIL_BattSetVoltage
Get voltage PIL_BattGetVoltage
Set current PIL_BattSetCurrent
Get current PIL_BattGetCurrent
Set enable PIL_BattSetEnable
Get enable PIL_BattGetEnable
Read interlock state PIL_BattReadInterlockState
Thermocouple Simulator

Set range PIL_VsourceSetRange
Get range PIL_VsourceGetRange
Set voltage PIL_VsourceSetVoltage
Get voltage PIL_VsourceGetVoltage
Set enable PIL_VsourceSetEnable
Get enable PIL_VsourceGetEnable
Mode Control

Set driver mode PIL_SetMode

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

181

Visual C++ Code Sample

File PILDEMO.C contains the source code for the PILDemo demonstration
program, and illustrates usage of many of the driver's functions.

WARNING

WHEN RUN, THIS PROGRAM ACTIVATES OUTPUTS BOTH INDIVIDUALLY AND IN
COMBINATIONS. IT SHOULD NOT BE RUN UNDER ANY CONDITIONS WHERE
DAMAGE COULD RESULT FROM SUCH EVENTS. FOR GREATEST SAFETY IT
SHOULD BE RUN ONLY WHEN NO EXTERNAL POWER IS APPLIED TO ANY CARD.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

182

Initialise and Close

Initialise and Close

This section details the use in Visual C++ of functions for initialising and closing
cards.

The Pilpxi driver supports two mechanisms for taking control of Pickering cards.
The two mechanisms are mutually exclusive - the first use of one method after
loading the driver DLL disables the other.

Controlling all cards

This method allows a single application program to open and access all installed
Pickering cards. Using this method the cards are first opened by calling function
PIL_OpenCards. Cards can then be accessed by other driver functions as
necessary.

When the application has finished using the cards it should close them by calling
function PIL_CloseCards.

Controlling cards individually

This method allows application programs to open and access Pickering cards on
an individual basis. Using this method a card is first opened by calling function
PIL_OpenSpecifiedCard. The card can then be accessed by other driver functions
as necessary.

When the application has finished using the card it should be closed by calling
function PIL_CloseSpecifiedCard.

Functions PIL_CountFreeCards and PIL_FindFreeCards assist in locating cards for
opening by this mechanism.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

183

Close All Cards (Visual C++)

Description

Closes all open Pickering cards, which must have been opened using
PIL_OpenCards. This function should be called when the application program has
finished using them.

Prototype

void _stdcall PIL_CloseCards(void);

Parameters:

None.

Returns:

Nothing.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

184

Close Specified Card (Visual C++)

Description

Closes the specified Pickering card, which must have been opened using
PIL_OpenSpecifiedCard. This function should be called when the application
program has finished using the card.

Prototype

DWORD _stdcall PIL_CloseSpecifiedCard(DWORD CardNum);

Parameters:

CardNum - card number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

185

Open All Cards (Visual C++)

Description

Locates and opens all installed Pickering cards. Once cards have been opened,
other functions may then be used to access cards numbered 1 thru the value
returned.

If cards have already been opened by the calling program, they are first closed -
as though by PIL_CloseCards - and then re-opened.

If cards are currently opened by some other program they cannot be accessed
and the function returns zero.

Prototype

DWORD _stdcall PIL_OpenCards(void);

Parameters:

None.

Returns:

The number of Pickering cards located and opened.

Note

When multiple Pickering cards are installed, the assignment of card numbers
depends upon their relative physical locations in the system (or more accurately,
on the order in which they are detected by the computer's operating system at
boot time).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

186

Open Specified Card (Visual C++)

Description

Opens the specified Pickering card, clearing all of its outputs. Once a card has
been opened, other driver functions may then be used to access it.

If the card is currently opened by some other program it cannot be accessed and
the function returns an error.

Prototype

DWORD _stdcall PIL_OpenSpecifiedCard(DWORD Bus, DWORD Slot, DWORD
*CardNum);

Parameters:

Bus - the card's logical bus location

Slot - the card's logical slot location

CardNum - pointer to variable to receive the card's logical card number

Returns:

Zero for success, or non-zero error code.

Note

The logical Bus and Slot values corresponding to a particular card are determined
by system topology; values for cards that are operable by the Pilpxi driver can be
discovered using PIL_FindFreeCards.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

187

Information and Status

Information and Status

This section details the use in Visual C++ of functions for obtaining card and sub-
unit information. Most of these functions are applicable to all card or sub-unit
types.

Functions are provided for obtaining:

• The software driver version number: PIL_Version
• The number of unopened cards: PIL_CountFreeCards
• The bus and slot locations of unopened cards: PIL_FindFreeCards
• A card's identification string: PIL_CardId
• A card's logical bus and slot location: PIL_CardLoc
• A card's status flags: PIL_Status
• A string describing an error from the numeric code returned by a function:

PIL_ErrorMessage
• A card's diagnostic information string: PIL_Diagnostic
• The numbers of input and output sub-units on a card: PIL_EumerateSubs
• Sub-unit information (numeric format): PIL_SubInfo
• Sub-unit information (string format): PIL_SubType
• An output sub-unit's closure limit value: PIL_ClosureLimit
• An output sub-unit's settling time value: PIL_SettleTime
• A sub-unit's status flags: PIL_SubStatus

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

188

Card ID (Visual C++)

Description

Obtains the identification string of the specified card. The string contains these
elements:

<type code>,<serial number>,<revision code>.

The <revision code> value represents the hardware/firmware version of the unit.

Prototype

DWORD _stdcall PIL_CardId(DWORD CardNum, CHAR *Str);

Parameters:

CardNum - card number

Str - pointer to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_CardId_s.

The length of the result string will not exceed the value of driver constant
MAX_ID_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

189

Card Location (Visual C++)

Description

Obtains the location of the specified card in terms of the logical PCI bus and slot
number in which it is located.

These values can be cross-referenced to physical slot locations in a particular
system.

Prototype

DWORD _stdcall PIL_CardLoc(DWORD CardNum, DWORD *Bus, DWORD
*Slot);

Parameters:

CardNum - card number

Bus - pointer to variable to receive bus location

Slot - pointer to variable to receive slot location

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

190

Closure Limit (Visual C++)

Description

Obtains the maximum number of switches that may be activated simultaneously
in the specified sub-unit. A single-channel multiplexer (MUX type) allows only one
channel to be closed at any time. In some other models such as high-density
matrix types a limit is imposed to prevent overheating; although it is possible to
disable the limit for these types (see PIL_SetMode), doing so is not
recommended.

Prototype

DWORD _stdcall PIL_ClosureLimit(DWORD CardNum, DWORD OutSub,
DWORD *Limit);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Limit - pointer to the variable to receive the result

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

191

Count Free Cards (Visual C++)

Description

Obtains the number of installed cards that are operable by the Pilpxi driver but
are not currently opened by it.

Prototype

DWORD _stdcall PIL_CountFreeCards(DWORD *NumCards);

Parameters:

NumCards - pointer to the variable to receive the result

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

192

Diagnostic (Visual C++)

Description

Obtains the diagnostic string of the specified card, giving expanded information
on any fault conditons indicated by the PIL_Status value.

Prototype

DWORD _stdcall PIL_Diagnostic(DWORD CardNum, CHAR *Str);

Parameters:

CardNum - card number

Str - pointer to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_Diagnostic_s.

The result string may include embedded newline characters, coded as the ASCII
<linefeed> character ('\x0A').

The length of the result string will not exceed the value of driver constant
MAX_DIAG_LENGTH.

Warning

Formatting and content of the diagnostic string may change as enhanced
diagnostic features are made available. It should therefore not be interpreted
programatically.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

193

Enumerate Sub-units (Visual C++)

Description

Obtains the numbers of input and output sub-units implemented on the specified
card.

Prototype

DWORD _stdcall PIL_EnumerateSubs(DWORD CardNum, DWORD *InSubs,
DWORD *OutSubs);

Parameters:

CardNum - card number

InSubs - pointer to variable to receive the number of INPUT sub-units

OutSubs - pointer to variable to receive the number of OUTPUT sub-units

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

194

Error Message (Visual C++)

Description

Obtains a string description of the error codes returned by other driver functions.

Prototype

DWORD _stdcall PIL_ErrorMessage(DWORD ErrorCode, CHAR *Str);

Parameters:

ErrorCode - the error code to be described

Str - pointer to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_ErrorMessage_s.

The length of the result string will not exceed the value of driver constant
MAX_ERR_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

195

Find Free Cards (Visual C++)

Description

Obtains the logical bus and slot locations of installed cards that are operable by
the Pilpxi driver and are currently unopened. These values are used with
PIL_OpenSpecifiedCard.

Prototype

DWORD _stdcall PIL_FindFreeCards(DWORD NumCards, DWORD *BusList,
DWORD *SlotList);

Parameters:

NumCards - the number of cards (maximum) for which information is to be
obtained

BusList - pointer to the one-dimensional array (vector) to receive cards' bus
location values

SlotList - pointer to the one-dimensional array (vector) to receive cards' slot
location values

Returns:

Zero for success, or non-zero error code.

Notes

The bus and slot locations of the first card found are placed respectively in the
least significant elements of the BusList and SlotList arrays. Successive elements
contain the values for further cards.

If the value given for NumCards is less than the number of cards currently
accessible, information is obtained only for the number of cards specified.

Warning

The arrays pointed to must have been assigned at least as many elements as the
number of cards for which information is being requested or adjacent memory will
be overwritten, causing data corruption and/or a program crash. The number of
accessible cards can be discovered using PIL_CountFreeCards.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

196

Settle Time (Visual C++)

Description

Obtains a sub-unit's settling time (or debounce period - the time taken for its
switches to stabilise). By default, Pilpxi driver functions retain control during this
period so that switches are guaranteed to have stabilised on completion. This
mode of operation can be overridden if required - see PIL_SetMode.

Prototype

DWORD _stdcall PIL_SettleTime(DWORD CardNum, DWORD OutSub, DWORD
*Time);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Time - pointer to variable to receive the result (in microseconds)

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

197

Card Status (Visual C++)

Description

Obtains the current status flags for the specified card.

Prototype

DWORD _stdcall PIL_Status(DWORD CardNum);

Parameters:

CardNum - card number

Returns:

A value representing the card's status flags.

Status Bit Definitions

Status bits are as follows:

0x80000000 - STAT_NO_CARD (no card with specified number)

0x40000000 - STAT_WRONG_DRIVER (card requires newer driver)

0x20000000 - STAT_EEPROM_ERR (card EEPROM fault)

0x10000000 - STAT_DISABLED (card disabled)

0x04000000 - STAT_BUSY (card operations not completed)

0x02000000 - STAT_HW_FAULT (card hardware defect)

0x01000000 - STAT_PARITY_ERROR (PCIbus parity error)

0x00080000 - STAT_CARD_INACCESSIBLE (Card cannot be accessed -
failed/removed/unpowered)

0x00040000 - STAT_UNCALIBRATED (one or more sub-units is uncalibrated)

0x00020000 - STAT_CALIBRATION_DUE (one or more sub-units is due for
calibration)

0x00000000 - STAT_OK (card functional and stable)

Corresponding enumerated constants are provided in Pilpxi.h.

Notes

Certain status bits are relevant only for specific classes of sub-unit, or for those
having particular characteristics.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

198

At card level, STAT_BUSY indicates if any of a card's sub-units have not yet
stabilised.

Diagnostic information on fault conditions indicated in the status value can be
obtained using PIL_Diagnostic.

Related functions

PIL_SubStatus

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

199

Sub-unit Information (Visual C++)

Description

Obtains a description of a sub-unit, as numeric values.

Prototype

DWORD _stdcall PIL_SubInfo(DWORD CardNum, DWORD SubNum, BOOL Out,
DWORD *TypeNum, DWORD *Rows, DWORD *Cols);

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

TypeNum - pointer to variable to receive type code

Rows - pointer to variable to receive row count

Cols - pointer to variable to receive column count

Returns:

Zero for success, or non-zero error code.

Results

Output sub-unit type codes are:

1 - TYPE_SW (uncommitted switch)

2 - TYPE_MUX (multiplexer single-channel)

3 - TYPE_MUXM (multiplexer, multi-channel)

4 - TYPE_MAT (matrix - LF)

5 - TYPE_MATR (matrix - RF)

6 - TYPE_DIG (digital outputs)

7 - TYPE_RES (programmable resistor)

8 - TYPE_ATTEN (programmable RF attenuator)

9 - TYPE_PSUDC (DC power supply)

10 - TYPE_BATT (battery simulator)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

200

11 - TYPE_VSOURCE (programmable voltage source)

12 - TYPE_MATP (matrix with restricted operating modes)

Corresponding enumerated constants are provided in Pilpxi.h.

Input sub-unit type codes are:

1 - INPUT

Row and column values give the dimensions of the sub-unit. For all types other
than matrices the column value contains the significant dimension: their row
value is always '1'.

Note

Some sub-unit types are supported by functions providing alternate and/or more
detailed information. These include:

TYPE_ATTEN - PIL_AttenInfo

TYPE_PSUDC - PIL_PsuInfo

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

201

Sub-unit Status (Visual C++)

Description

Obtains the current status flags for the specified output sub-unit. Status bits
associated with significant card-level conditions are also returned.

Prototype

DWORD _stdcall PIL_SubStatus(DWORD CardNum, DWORD SubNum);

Parameters:

CardNum - card number

SubNum - sub-unit number

Returns:

A value representing the sub-unit's status flags.

Status Bit Definitions

Status bits are as follows:

0x80000000 - STAT_NO_CARD (no card with specified number)

0x40000000 - STAT_WRONG_DRIVER (card requires newer driver)

0x20000000 - STAT_EEPROM_ERR (card EEPROM fault)

0x10000000 - STAT_DISABLED (card disabled)

0x08000000 - STAT_NO_SUB (no sub-unit with specified number)

0x04000000 - STAT_BUSY (sub-unit operations not completed)

0x02000000 - STAT_HW_FAULT (card hardware defect)

0x01000000 - STAT_PARITY_ERROR (PCIbus parity error)

0x00800000 - STAT_PSU_INHIBITED (power supply output is disabled - by
software)

0x00400000 - STAT_PSU_SHUTDOWN (power supply output is shutdown -
due to overload)

0x00200000 - STAT_PSU_CURRENT_LIMIT (power supply is operating in
current-limited mode)

0x00100000 - STAT_CORRUPTED (sub-unit logical state is corrupted)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

202

0x00080000 - STAT_CARD_INACCESSIBLE (Card cannot be accessed -
failed/removed/unpowered)

0x00040000 - STAT_UNCALIBRATED (sub-unit is uncalibrated)

0x00020000 - STAT_CALIBRATION_DUE (sub-unit is due for calibration)

0x00000000 - STAT_OK (sub-unit functional and stable)

Corresponding enumerated constants are provided in Pilpxi.h.

Notes

Certain status bits are relevant only for specific classes of sub-unit, or for those
having particular characteristics.

Diagnostic information on fault conditions indicated in the status value can be
obtained using PIL_Diagnostic.

Related functions

PIL_Status

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

203

Sub-unit Type (Visual C++)

Description

Obtains a description of a sub-unit, as a text string.

Prototype

DWORD _stdcall PIL_SubType(DWORD CardNum, DWORD SubNum, BOOL
Out, CHAR *Str);

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

Str - pointer to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Type string Description

INPUT(<size>) Digital inputs

SWITCH(<size>) Uncommitted switches

MUX(<size>) Multiplexer, single-channel
only

MUXM(<size>) Multiplexer, multi-channel

MATRIX(<columns>X<rows>) Matrix, LF

MATRIXR(<columns>X<rows>) Matrix, RF

DIGITAL(<size>) Digital Outputs

RES(<number of resistors in chain>) Programmable resistor

ATTEN(<number of pads>) Programmable RF attenuator -
see note

PSUDC(0) DC Power Supply - see note

BATT(<Voltage DAC resolution,
bits>) Battery simulator

VSOURCE(<Voltage DAC resolution,
bits>) Programmable voltage source

MATRIXP(<columns>X<rows>) Matrix with restricted
operating modes

Notes

A more secure version of this function exists as PIL_SubType_s.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

204

Some sub-unit types are supported by functions providing more detailed
information. These include:

ATTEN - PIL_AttenType

PSUDC - PIL_PsuType

The length of the result string will not exceed the value of driver constant
MAX_SUB_TYPE_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

205

Version (Visual C++)

Description

Obtains the driver version code.

Prototype

DWORD _stdcall PIL_Version(void);

Parameters:

None.

Returns:

The driver version code, multiplied by 100 (i.e. a value of 100 represents
version 1.00)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

206

Switching and General Purpose Output

Switching and General Purpose Output

This section details the use in Visual C++ of functions that are applicable to most
output sub-unit types.

Note that although these functions may be used with them, some sub-unit types -
for example matrix and programmable RF attenuator - are also served by specific
functions offering more straightforward control.

Functions are provided to:

• Clear all output channels of all open Pickering cards: PIL_ClearAll
• Clear all output channels of a single Pickering card: PIL_ClearCard
• Clear all output channels of a sub-unit: PIL_ClearSub
• Open or close a single output channel: PIL_OpBit
• Set a sub-unit's output pattern: PIL_WriteSub, (PIL_WriteSubArray)
• Obtain the state of a single output channel: PIL_ViewBit
• Obtain a sub-unit's output pattern: PIL_ViewSub, (PIL_ViewSubArray)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

207

Clear All (Visual C++)

Description

Clears (de-energises or sets to logic '0') all outputs of all sub-units of every open
Pickering card.

Prototype

DWORD _stdcall PIL_ClearAll(void);

Parameters:

None.

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

208

Clear Card (Visual C++)

Description

Clears (de-energises or sets to logic '0') all outputs of all sub-units of the
specified Pickering card.

Prototype

DWORD _stdcall PIL_ClearCard(DWORD CardNum);

Parameters:

CardNum - card number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

209

Clear Sub-unit (Visual C++)

Description

Clears (de-energises or sets to logic '0') all outputs of a sub-unit.

Prototype

DWORD _stdcall PIL_ClearSub(DWORD CardNum, DWORD OutSub);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

210

Operate Bit (Visual C++)

Description

Operate a single output channel or bit.

Note that in the case of a single-channel multiplexer (MUX type) any existing
channel closure will be cleared automatically prior to selecting the new channel.

Note that PIL_OpCrosspoint allows more straightforward use of row/column co-
ordinates with matrix sub-units.

Prototype

DWORD _stdcall PIL_OpBit(DWORD CardNum, DWORD OutSub, DWORD
BitNum, BOOL Action);

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

Action - 1 to energise, 0 to de-energise

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

211

View Bit (Visual C++)

Description

Obtains the state of an individual output.

Prototype

DWORD _stdcall PIL_ViewBit(DWORD CardNum, DWORD OutSub, DWORD
BitNum, BOOL *State);

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

State - pointer to variable to receive the result (0 = OFF or logic '0', 1 = ON or
logic '1')

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

212

View Sub-unit (Visual C++)

Description

Obtains the state of all outputs of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Prototype

DWORD _stdcall PIL_ViewSub(DWORD CardNum, DWORD OutSub, DWORD
*Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_ViewSub_s.

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Warning

The data array pointed to must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

213

View Sub-unit - SAFEARRAY (Visual C++)

Description

Obtains the state of all outputs of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Prototype

DWORD _stdcall PIL_ViewSubArray(DWORD CardNum, DWORD OutSub,
LPSAFEARRAY FAR* Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional SAFEARRAY structure to receive the
result

Returns:

Zero for success, or non-zero error code.

Notes

Although mainly intended to provide robust array handling in Visual Basic, this
function is also usable in Visual C++.

Function PIL_ViewSub is an equivalent function employing a 'standard' C data
array.

For a Matrix sub-unit, the result is folded into the SAFEARRAY on its row-axis: see
Data Formats.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

214

Write Sub-unit (Visual C++)

Description

Sets all outputs of a sub-unit to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written.

Prototype

DWORD _stdcall PIL_WriteSub(DWORD CardNum, DWORD OutSub, DWORD
*Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) containing the bit-pattern
to be written

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_WriteSub_s.

For a Matrix sub-unit, the data is folded into the vector on its row-axis: see Data
Formats.

Warning

The data array pointed to must contain sufficient bits to represent the bit-pattern
for the specified sub-unit, or undefined data will be written to the more significant
bits.

Example Code

For clarity, this example omits initialising the variables CardNum, OutSub etc. and
does no error-checking.

/* Dimension a DWORD data array to contain the number of bits

 necessary to represent the sub-unit (e.g. 2 longwords

 supports sub-units having upto 64 switches) */

DWORD Data[2]; /* Value specifies the number of array elements */

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

215

/* Data[0] bit 0 represents switch #1

 Data[0] bit 1 represents switch #2

 ... etc.

 Data[0] bit 31 represents switch #32

 Data[1] bit 0 represents switch #33

 ... etc. */

/* Setup array data to turn on switches 3, 33 and output to the card
*/

Data[0] = 0x00000004UL; /* set DWORD 0 bit 2 (switch 3) */

Data[1] = 0x00000001UL; /* set DWORD 1 bit 0 (switch 33) */

Result = PIL_WriteSub(CardNum, OutSub, Data);

/* Add switch 4 to the array and output to the card */

Data[0] |= 0x00000008UL; /* set DWORD 0 bit 3 (switch 4) */

Result = PIL_WriteSub(CardNum, OutSub, Data);

/* ... now have switches 3, 4, 33 energised */

/* Delete switch 33 from the array and output to the card */

Data[1] &= 0xFFFFFFFEUL; /* clear DWORD 1 bit 0 (switch 33) */

Result = PIL_WriteSub(CardNum, OutSub, Data);

/* ... leaving switches 3 and 4 energised */

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

216

Write Sub-unit - SAFEARRAY (Visual C++)

Description

Sets all outputs of a sub-unit to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written.

Prototype

DWORD _stdcall PIL_WriteSubArray(DWORD CardNum, DWORD OutSub,
LPSAFEARRAY FAR* Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional SAFEARRAY structure containing the bit-
pattern to be written

Returns:

Zero for success, or non-zero error code.

Notes

Although mainly intended to provide robust array handling in Visual Basic, this
function is also usable in Visual C++.

Function PIL_WriteSub is an equivalent function employing a 'standard' C data
array.

For a Matrix sub-unit, the data is folded into the SAFEARRAY on its row-axis: see
Data Formats.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

217

Specialised Switching

Specialised Switching

This section details the use in Visual C++ of functions specific to particular types
of switching sub-unit (uncommitted switches, multiplexer, matrix and digital
output types).

Matrix operations

• Open or close a single matrix crosspoint: PIL_OpCrosspoint
• Obtain the state of a single matrix crosspoint: PIL_ViewCrosspoint

• Obtain/set the state of an individual switch: PIL_OpSwitch

• Obtain sub-unit attribute values: PIL_SubAttribute

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

218

Operate Crosspoint (Visual C++)

Description

Operate a single matrix crosspoint.

Prototype

DWORD _stdcall PIL_OpCrosspoint(DWORD CardNum, DWORD OutSub,
DWORD Row, DWORD Column, BOOL Action);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

Action - 1 to energise, 0 to de-energise

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_OpBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Related Matrix Functions

PIL_ViewCrosspoint

PIL_MaskCrosspoint

PIL_ViewMaskCrosspoint

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

219

Operate switch (Visual C++)

Description

This function obtains, and optionally sets, the state of a switch. It allows explicit
access to the individual switches making up a sub-unit, in types where their
operation is normally handled automatically by the driver. The main purpose of
this is in implementing fault diagnostic programs for such types; it can also be
used where normal automated behaviour does not suit an application.

Prototype

DWORD _stdcall PIL_OpSwitch(DWORD CardNum, DWORD OutSub, DWORD
SwitchFunc, DWORD SegNum, DWORD SwitchNum, DWORD SubSwitch,
DWORD SwitchAction, BOOL *State);

Parameters:

CardNum - card number

OutSub - sub-unit number

SwitchFunc - code indicating the functional group of the switch, see below

SegNum - the segment location of the switch

SwitchNum - the number of the switch in its functional group (unity-based)

SubSwitch - the number of the subswitch to operate (unity-based)

SwitchAction - code indicating the action to be performed, see below

State - pointer to variable to receive the state of the switch (after performing
any action)

Returns:

Zero for success, or non-zero error code.

Applicable sub-unit types

This function is only usable with MATRIX or MATRIXP sub-units. For further
information about matrix auto-isolation and auto-loopthru features see:
segmented matrix, unsegmented matrix.

SwitchFunc value

A value indicating the functional group of the switch to be accessed.

Value Ident Function

0 SW_FUNC_CHANNEL A channel (matrix crosspoint) switch

1 SW_FUNC_X_ISO A matrix X-isolation switch

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

220

2 SW_FUNC_Y_ISO A matrix Y-isolation switch

3 SW_FUNC_X_LOOPTHRU A matrix X-loopthru switch

4 SW_FUNC_Y_LOOPTHRU A matrix Y-loopthru switch

5 SW_FUNC_X_BIFURCATION A matrix X-bifurcation switch

6 SW_FUNC_Y_BIFURCATION A matrix Y-bifurcation switch

SegNum value

The segment location of the switch. The numbers and sizes of segments on each
matrix axis can be obtained using PIL_SubAttribute.

In an unsegmented matrix, use SegNum = 1.

In a segmented matrix, segment numbers for crosspoint and isolation switches
are determined logically.

SwitchNum value

The number of the switch in its functional group (unity-based).

For channel (crosspoint) switches, the switch number can be either:

• if SegNum is zero, the global channel number of the switch (see output bit
number)

• if SegNum is non-zero, the segment-local number of the switch, calculated
in a similar way to the above

SubSwitch value

The number of the subswitch to operate (unity-based). This parameter caters for
a situation in which a logical channel, isolation or loopthru switch is served by
more than one physical relay (as for example when 2-pole operation is
implemented using independently-driven single-pole relays).

The numbers of subswitches for each functional group can be obtained using
PIL_SubAttribute.

SwitchAction value

A code indicating the action to be performed.

Value Ident Function

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

221

0 SW_ACT_NONE No switch change - just set State result

1 SW_ACT_OPEN Open switch

2 SW_ACT_CLOSE Close switch

Loopthru switches

Loopthru switches are initialised by the driver to a closed state, which may mean
that they are either energised or de-energised depending upon their type. In
normal automated operation loopthru switches open when any crosspoint on their
associated line is closed. Actions SW_ACT_CLOSE and SW_ACT_OPEN close or
open loopthru switch contacts as their names imply.

Operational considerations

This function can be used to alter a pre-existing switch state in a sub-unit, set up
by fuctions such as PIL_OpBit or PIL_WriteSub. However once the state of any
switch is changed by PIL_OpSwitch the logical state of the sub-unit is considered
to have been destroyed. This condition is flagged in the result of PIL_SubStatus
(bit STAT_CORRUPTED). Subsequent attempts to operate it using 'ordinary'
switch functions such as PIL_OpBit, PIL_ViewBit etc. will fail (result
ER_STATE_CORRUPT). Normal operation can be restored by clearing the sub-unit
using PIL_ClearSub, PIL_ClearCard or PIL_ClearAll.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

222

View Crosspoint (Visual C++)

Description

Obtains the state of an individual matrix crosspoint.

Prototype

DWORD _stdcall PIL_ViewCrosspoint(DWORD CardNum, DWORD OutSub,
DWORD Row, DWORD Column, BOOL *State);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

State - pointer to variable to receive the result (0 = OFF, 1 = ON)

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_ViewBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

223

Sub-unit Attribute (Visual C++)

Description

Obtains the value of a sub-unit attribute. These values facilitate operation using
PIL_OpSwitch.

Prototype

DWORD _stdcall PIL_SubAttribute(DWORD CardNum, DWORD SubNum, BOOL
Out, DWORD AttrCode, DWORD *AttrValue);

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

AttrCode - a value indicating the sub-unit attribute to be queried, see below

AttrValue - pointer to variable to receive the attribute's value

Returns:

Zero for success, or non-zero error code.

Applicable sub-unit types

This function is only usable with MATRIX and MATRIXP sub-units. For further
information about matrix auto-isolation and auto-loopthru features see:
segmented matrix, unsegmented matrix.

AttrCode values

Value Ident Function

1 SUB_ATTR_CHANNEL_SUBSWITCHES Gets number of subswitches per
logical channel (matrix
crosspoint)

2 SUB_ATTR_X_ISO_SUBSWITCHES Gets number of subswitches per
logical X-isolator

3 SUB_ATTR_Y_ISO_SUBSWITCHES Gets number of subswitches per
logical Y-isolator

4 SUB_ATTR_X_LOOPTHRU_SUBSWITCHES Gets number of subswitches per
logical X-loopthru

5 SUB_ATTR_Y_LOOPTHRU_SUBSWITCHES Gets number of subswitches per
logical Y-loopthru

6 SUB_ATTR_MATRIXP_TOPOLOGY Gets a code representing
MATRIXP topology (see below)

0x100 SUB_ATTR_NUM_X_SEGMENTS Gets number of X-axis segments

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

224

0x101 SUB_ATTR_X_SEGMENT01_SIZE Gets size of X-axis segment 1

0x102 SUB_ATTR_X_SEGMENT02_SIZE Gets size of X-axis segment 2

0x103 SUB_ATTR_X_SEGMENT03_SIZE Gets size of X-axis segment 3

0x104 SUB_ATTR_X_SEGMENT04_SIZE Gets size of X-axis segment 4

0x105 SUB_ATTR_X_SEGMENT05_SIZE Gets size of X-axis segment 5

0x106 SUB_ATTR_X_SEGMENT06_SIZE Gets size of X-axis segment 6

0x107 SUB_ATTR_X_SEGMENT07_SIZE Gets size of X-axis segment 7

0x108 SUB_ATTR_X_SEGMENT08_SIZE Gets size of X-axis segment 8

0x109 SUB_ATTR_X_SEGMENT09_SIZE Gets size of X-axis segment 9

0x10A SUB_ATTR_X_SEGMENT10_SIZE Gets size of X-axis segment 10

0x10B SUB_ATTR_X_SEGMENT11_SIZE Gets size of X-axis segment 11

0x10C SUB_ATTR_X_SEGMENT12_SIZE Gets size of X-axis segment 12

0x200 SUB_ATTR_NUM_Y_SEGMENTS Gets number of Y-axis segments

0x201 SUB_ATTR_Y_SEGMENT01_SIZE Gets size of y-axis segment 1

0x202 SUB_ATTR_Y_SEGMENT02_SIZE Gets size of y-axis segment 2

MATRIXP topology code values

Value Ident Function

0 MATRIXP_NOT_APPLICABLE Sub-unit is not MATRIXP type

1 MATRIXP_RESTRICTIVE_X MATRIXP allowing only one column (X)
connection on any row(Y)

2 MATRIXP_RESTRICTIVE_Y MATRIXP allowing only one row (Y)
connection on any column(X)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

225

Switch Masking

Switch Masking

This section details the use in Visual C++ of switch masking functions.

Masking permits disabling operation of chosen switch channels by functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

These functions report error ER_OUTPUT_MASKED if an attempt is made to
activate a masked channel.

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Masking functions, all switching sub-unit types

• Clear a sub-unit's mask: PIL_ClearMask
• Mask or unmask a single output channel: PIL_MaskBit
• Set a sub-unit's mask pattern: PIL_WriteMask, PIL_WriteMask_s,

(PIL_WriteMaskArray)
• Obtain the mask state of a single output channel: PIL_ViewMaskBit
• Obtain a sub-unit's mask pattern: PIL_ViewMask, PIL_ViewMask_s,

(PIL_ViewMaskArray)

Masking functions, matrix sub-units

• Mask or unmask a single matrix crosspoint: PIL_MaskCrosspoint
• Obtain the mask state of a single matrix crosspoint:

PIL_ViewMaskCrosspoint

Note

Masking only allows channels to be disabled in the OFF state; applying a mask to
a channel that is already turned ON forces it OFF.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

226

Clear Mask (Visual C++)

Description

Clears a sub-unit's switch mask, enabling operation of all outputs by functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

Prototype

DWORD _stdcall PIL_ClearMask(DWORD CardNum, DWORD OutSub);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

227

Mask Bit (Visual C++)

Description

Mask or unmask a single output bit.

Masking disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits. Note that PIL_MaskCrosspoint allows more
straightforward use of row/column co-ordinates with matrices.

Prototype

DWORD _stdcall PIL_MaskBit(DWORD CardNum, DWORD OutSub, DWORD
BitNum, BOOL Action);

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

Action - 1 to mask, 0 to unmask

Returns:

Zero for success, or non-zero error code.

Note

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

228

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

229

Mask Crosspoint (Visual C++)

Description

Mask or unmask a single matrix crosspoint.

Masking disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility can be used to guard against programming errors that could
otherwise result in damage to matrix switches or external circuits.

Prototype

DWORD _stdcall PIL_MaskCrosspoint(DWORD CardNum, DWORD OutSub,
DWORD Row, DWORD Column, BOOL Action);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

Action - 1 to mask, 0 to unmask

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_MaskBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

230

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

231

View Mask (Visual C++)

Description

Obtains the switch mask of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Prototype

DWORD _stdcall PIL_ViewMask(DWORD CardNum, DWORD OutSub, DWORD
*Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) to receive the result

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_ViewMask_s.

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Warning

The data array pointed to must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

232

View Mask - SAFEARRAY (Visual C++)

Description

Obtains the switch mask of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Prototype

DWORD _stdcall PIL_ViewMaskArray(DWORD CardNum, DWORD OutSub,
LPSAFEARRAY FAR* Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional SAFEARRAY structure to receive the
result

Returns:

Zero for success, or non-zero error code.

Note

Although mainly intended to provide robust array handling in Visual Basic, this
function is also usable in Visual C++.

Function PIL_ViewMask is an equivalent function employing a 'standard' C data
array.

For a Matrix sub-unit, the result is folded into the SAFEARRAY on its row-axis: see
Data Formats.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

233

View Mask Bit (Visual C++)

Description

Obtains the state of an individual output's mask.

Prototype

DWORD _stdcall PIL_ViewMaskBit(DWORD CardNum, DWORD OutSub,
DWORD BitNum, BOOL *State);

Parameters:

CardNum - card number

OutSub - output sub-unit number

BitNum - output bit number

State - pointer to variable to receive the result (0 = unmasked, 1 = masked)

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

234

View Mask Crosspoint (Visual C++)

Description

Obtains the state of an individual matrix crosspoint's mask.

Prototype

DWORD _stdcall PIL_ViewMaskCrosspoint(DWORD CardNum, DWORD OutSub,
DWORD Row, DWORD Column, BOOL *State);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Row - crosspoint row (Y) location

Column - crosspoint column (X) location

State - pointer to variable to receive the result (0 = unmasked, 1 = masked)

Returns:

Zero for success, or non-zero error code.

Note

This function supports matrix operation using row/column co-ordinates in place of
the linearized bit-number method employed by PIL_ViewMaskBit. It offers more
straightforward matrix operation, and avoids the need for re-coding if a matrix
card is replaced by one having different dimensions.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

235

Write Mask (Visual C++)

Description

Sets a sub-unit's switch mask to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written into the
mask. A '1' bit in the mask disables the corresponding switch for functions:

 PIL_OpBit

 PIL_OpCrosspoint

 PIL_WriteSub

 PIL_WriteSub_s

 PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Prototype

DWORD _stdcall PIL_WriteMask(DWORD CardNum, DWORD OutSub, DWORD
*Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) containing the mask
pattern to be set

Returns:

Zero for success, or non-zero error code.

Notes

A more secure version of this function exists as PIL_WriteMask_s.

For a Matrix sub-unit, the mask data is folded into the vector on its row-axis: see
Data Formats.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

236

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Warning

The data array pointed to must contain sufficient bits to represent the mask
pattern for the specified sub-unit, or undefined data will be written to the more
significant bits.

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

237

Write Mask - SAFEARRAY (Visual C++)

Description

Sets a sub-unit's switch mask to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written into the
mask. A '1' bit in the mask disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Prototype

DWORD _stdcall PIL_WriteMaskArray(DWORD CardNum, DWORD OutSub,
LPSAFEARRAY FAR* Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional SAFEARRAY structure containing the
mask pattern to be set

Returns:

Zero for success, or non-zero error code.

Notes

Although mainly intended to provide robust array handling in Visual Basic, this
function is also usable in Visual C++.

Function PIL_WriteMask is an equivalent function employing a 'standard' C data
array.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

238

For a Matrix sub-unit, the mask data is folded into the SAFEARRAY on its row-
axis: see Data Formats.

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

239

Input

Input

This section details the use in Visual C++ of functions specific to input sub-units.

Specific functions are provided to:

• Obtain the state of a single input: PIL_ReadBit
• Obtain a sub-unit's input pattern: PIL_ReadSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

240

Read Bit (Visual C++)

Description

Obtains the state of an individual input.

Prototype

DWORD _stdcall PIL_ReadBit(DWORD CardNum, DWORD InSub, DWORD
BitNum, BOOL *State);

Parameters:

CardNum - card number

InSub - input sub-unit number

BitNum - input bit number

State - pointer to variable to receive the result (0 = logic '0', 1 = logic '1')

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

241

Read Sub-unit (Visual C++)

Description

Obtains the current state of all inputs of a sub-unit.

Prototype

DWORD _stdcall PIL_ReadSub(DWORD CardNum, DWORD InSub, DWORD
*Data);

Parameters:

CardNum - card number

InSub - input sub-unit number

Data - pointer to variable to receive result

Returns:

Zero for success, or non-zero error code.

Note

A more secure version of this function exists as PIL_ReadSub_s.

Warning

The data array pointed to must contain sufficient bits to hold the bit-pattern for
the specified sub-unit, or adjacent memory will be overwritten, causing data
corruption and/or a program crash.

Example Code

See the description of PIL_WriteSub for example code using an array-based
function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

242

Calibration

Calibration

This section details the use in Visual C++ of functions associated with storing
calibration values in a card's non-volatile memory. This facility is only available
for certain sub-unit types, such as programmable resistors; either integer data
(for simple types) or floating-point data (for precision types) may be supported.

Specific functions are provided to:

• Retrieve an integer calibration value from non-volatile memory:
PIL_ReadCal

• Store an integer calibration value in non-volatile memory: PIL_WriteCal
• Retrieve floating-point calibration value(s) from non-volatile memory:

PIL_ReadCalFP
• Store floating-point calibration value(s) in non-volatile memory:

PIL_WriteCalFP
• Retrieve a sub-unit's calibration date from non-volatile memory:

PIL_ReadCalDate
• Store a sub-unit's calibration date in non-volatile memory:

PIL_WriteCalDate
• Set a calibration point: PIL_SetCalPoint

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

243

Read Integer Calibration Value (Visual C++)

Description

Reads an integer calibration value from on-card EEPROM.

Prototype

DWORD _stdcall PIL_ReadCal(DWORD CardNum, DWORD OutSub, DWORD
Idx, DWORD *Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Idx - calibration value index number (see below)

Data - pointer to variable to receive result

Returns:

Zero for success, or non-zero error code.

Notes

This function is usable only with sub-units that support integer calibration data.

In simple programmable resistor models such as:

40-280

40-281

40-282

40-290

40-291

40-295

40-296

50-295

the Pilpxi driver places no interpretation on the stored value - an application
program can utilise it in any way it wishes.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

244

In some other models, including:

41-735-001

41-752-001

stored values are utilised by specific Pilpxi driver functions, and they should only
be overwritten by an appropriate calibration utility.

For programmable resistors supporting this function the valid range of Idx values
corresponds to the number of bits, i.e. to the range of output bit number values.
A 16-bit resistor sub-unit typically provides 16 x 16-bit values.

The storage capacity of other types supporting this feature is determined by their
functionality.

Related functions

PIL_WriteCal

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

245

Read Calibration Date (Visual C++)

Description

Reads a sub-unit's calibration date and interval from on-card EEPROM.

Prototype

DWORD _stdcall PIL_ReadCalDate(DWORD CardNum, DWORD OutSub,
DWORD Store, DWORD *Year, DWORD *Day, DWORD *Interval);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Year - pointer to variable to receive the year of calibration

Day - pointer to variable to receive the day in the year of calibration

Interval - pointer to variable to receive the calibration interval (in days)

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data; it can be used to discover when the sub-unit was last calibrated, and when
recalibration will become due. Bit STAT_CALIBRATION_DUE in the result of
PIL_Status or PIL_SubStatus indicates the need for recalibration.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Related functions

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

246

PIL_WriteCalDate

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

247

Read Floating-point Calibration Value (Visual C++)

Description

Reads one or more floating-point calibration values from on-card EEPROM.

Prototype

DWORD _stdcall PIL_ReadCalFP(DWORD CardNum, DWORD OutSub, DWORD
Store, DWORD Offset, DWORD NumValues, double *Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Offset - the offset in the sub-unit's calibration store at which to start

NumValues - the number of values to be read

Data - pointer to array to receive result

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of values stored and their purpose is specific
to the target sub-unit.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Related functions

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

248

PIL_WriteCalFP

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

249

Set Calibration Point (Visual C++)

Description

Sets a sub-unit to a state corresponding to one of its defined calibration points.

Prototype

DWORD _stdcall PIL_SetCalPoint(DWORD CardNum, DWORD OutSub, DWORD
Idx);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Idx - the index number of the calibration point (see below)

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of calibration points supported is specific to
the target sub-unit.

The Idx value used by this function corresponds directly to the offset in the sub-
unit's calibration store at which the value is to be stored and retrieved, using
PIL_WriteCalFP and PIL_ReadCalFP.

WARNING

Selection of a calibration point causes the sub-unit to change state; the resulting
state may be outside its normally desired range of operation. On completion of a
calibration sequence, PIL_ResSetResistance can be used to normalise the setting.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

250

Write Integer Calibration Value (Visual C++)

Description

Writes an integer calibration value to on-card EEPROM.

Prototype

DWORD _stdcall PIL_WriteCal(DWORD CardNum, DWORD OutSub, DWORD
Idx, DWORD Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Idx - calibration value index number (see below)

Data - the value to be written

Returns:

Zero for success, or non-zero error code.

Notes

This function is usable only with sub-units that support integer calibration data.

In simple programmable resistor models such as:

40-280

40-281

40-282

40-290

40-291

40-295

40-296

50-295

the Pilpxi driver places no interpretation on the stored value - an application
program can utilise it in any way it wishes.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

251

In some other models, including:

41-735-001

41-752-001

stored values are utilised by specific Pilpxi driver functions, and they should only
be overwritten by an appropriate calibration utility.

The number of bits actually stored is specific to the target sub-unit - any
redundant high-order bits of the supplied Data value are ignored.

For programmable resistors supporting this function the valid range of Idx values
corresponds to the number of bits, i.e. to the range of output bit number values.
A 16-bit resistor sub-unit typically provides 16 x 16-bit values.

The storage capacity of other types supporting this feature is determined by their
functionality.

Related functions

PIL_ReadCal

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

252

Write Calibration Date (Visual C++)

Description

Writes a sub-unit's calibration date and interval into on-card EEPROM. Date
information is obtained from the current system date.

Prototype

DWORD _stdcall PIL_WriteCalDate(DWORD CardNum, DWORD OutSub,
DWORD Store, DWORD Interval);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Interval - the desired calibration interval (in days)

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of values stored and their purpose is specific
to the target sub-unit.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Related functions

PIL_ReadCalDate

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

253

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

254

Write Floating-point Calibration Value (Visual C++)

Description

Writes one or more floating-point calibration values into on-card EEPROM.

Prototype

DWORD _stdcall PIL_WriteCalFP(DWORD CardNum, DWORD OutSub, DWORD
Store, DWORD Offset, DWORD NumValues, double *Data);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Store - value indicating which store to access (see below)

Offset - the offset in the sub-unit's calibration store at which to start

NumValues - the number of values to be written

Data - pointer to array containing values to write

Returns:

Zero for success, or non-zero error code.

Notes

This function is only applicable to sub-units that support floating-point calibration
data, and would normally be used by a calibration tool for the model concerned.
Floating-point calibration data is utilised by functions such as
PIL_ResSetResistance. The number of values stored and their purpose is specific
to the target sub-unit.

Some sub-units support dual calibration stores, known as "user" and "factory"
stores. The user store holds the active calibration data, while the factory store
holds a backup calibration that can be reverted to in the event of the user store
contents becoming invalid.

Value of "Store"
Parameter

Ident Function

0 CAL_STORE_USER Access user calibration
store

1 CAL_STORE_FACTORY Access factory calibration
store

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

255

WARNING

Writing new values will affect the sub-unit's calibration.

Related functions

PIL_ReadCalFP

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

256

Programmable Resistor

Programmable Resistor

This section details the use in Visual C++ of functions specific to programmable
resistor sub-units.

Detailed information about a programmable resistor sub-unit, if available, can be
obtained using function PIL_ResInfo.

Precision models

Precision programmable resistor models such as 40-260-001 are supported by
functions:

• PIL_ResGetResistance
• PIL_ResSetResistance

which allow chosen resistance values to be set.

Simple models

In models not supported by the above functions general purpose output functions
such as PIL_WriteSub must be used to program resistance values by setting bit-
patterns explicitly.

Models 40-280, 40-281 and 40-282 are configured as simple resistor/switch
arrays and programming should be straightforward.

In models employing a series resistor chain - such as 40-290, 40-291, 40-292
and 40-295 - each of a card's programmable resistors is implemented as a
separate logical sub-unit constructed from a series chain of individual fixed
resistor elements, each element having an associated shorting switch. In the
cleared state all switches are open, giving the programmable resistor its
maximum value. A nominal value of zero ohms is obtained by turning all switches
ON; other values by turning on an appropriate pattern of switches.

In standard models the individual fixed resistors are arranged in a binary
sequence, the least significant bit of the least significant element in the array
passed to PIL_WriteSub corresponding to the lowest value resistor element. For
example, in a standard model 40-290 16-bit resistor of 32768 ohms:

Data[0] bit 0 (value 0x0001) corresponds to the 0R5 resistor element

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

257

Data[0] bit 1 (value 0x0002) corresponds to the 1R0 resistor element

thru...

Data[0] bit 15 (value 0x8000) corresponds to the 16384R resistor element

Setting a nominal value of 68 ohms (= 64 + 4 ohms) therefore requires Data[0]
set to 0xFF77 (the inverse of the binary pattern 0000 0000 1000 1000).

Special models may have some other arrangement, and may also include a fixed
offset resistor that is permanently in circuit.

Non-volatile storage of calibration values is supported through the functions
PIL_ReadCal and PIL_WriteCal.

See the application note on Simple Programmable Resistor Cards.

Summary of functions for normal operation of "Programmable Resistor"
cards

Model(s) Class Functions
PIL_ResSetResistance
PIL_ResGetResistance

40-260-001 Precision

PIL_ReadCalDate
PIL_WriteSub 40-260-999 Precision
PIL_ViewSub
PIL_ResSetResistance
PIL_ResGetResistance

40-261 Precision

PIL_ReadCalDate
PIL_ResSetResistance
PIL_ResGetResistance

40-262 Precision

PIL_ReadCalDate
PIL_ResSetResistance
PIL_ResGetResistance

40-265 Precision

PIL_ReadCalDate
PIL_OpBit
PIL_ViewBit
PIL_WriteSub
PIL_ViewSub
PIL_ReadCal

40-280, 40-281,
40-282

Simple

PIL_WriteCal
PIL_WriteSub
PIL_ViewSub
PIL_ReadCal

40-290, 40-291,
40-292

Simple

PIL_WriteCal
PIL_WriteSub 40-295 Simple
PIL_ViewSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

258

PIL_ReadCal
PIL_WriteCal
PIL_WriteSub
PIL_ViewSub
PIL_ReadCal

40-296 Simple

PIL_WriteCal
PIL_ResSetResistance
PIL_ResGetResistance

40-297 Precision

PIL_ReadCalDate
PIL_WriteSub
PIL_ViewSub
PIL_ReadCal

50-295 Simple

PIL_WriteCal
PIL_ResSetResistance
PIL_ResGetResistance

50-297 Precision

PIL_ReadCalDate
...

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

259

Get Resistance Value (Visual C++)

Description

Obtains the current resistance setting of the specified programmable resistor.
This function is only usable with programmable resistor models that support it:
such capability is indicated in the result of PIL_ResInfo.

The value obtained for a resistance setting of infinity, if the sub-unit permits this,
is HUGE_VAL (#include <math.h>).

Prototype

DWORD _stdcall PIL_ResGetResistance(DWORD CardNum, DWORD OutSub,
double *Resistance);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Resistance - pointer to variable to receive the result

Returns:

Zero for success, or non-zero error code.

Related functions

PIL_ResInfo

PIL_ResSetResistance

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

260

Resistor information (Visual C++)

Description

Obtains detailed information on a programmable resistor sub-unit.

Prototype

DWORD _stdcall PIL_ResInfo(DWORD CardNum, DWORD OutSub, double
*MinRes, double *MaxRes, double *RefRes, double *PrecPC, double
*PrecDelta, double *Int1, double *IntPrec, DWORD *Capabilities);

Parameters:

CardNum - card number

SubNum - sub-unit number

MinRes - pointer to variable to receive minimum resistance setting

MaxRes - pointer to variable to receive maximum resistance setting

RefRes - pointer to variable to receive reference resistance value

PrecPC - pointer to variable to receive percentage precision value

PrecDelta - pointer to variable to receive offset precision, in ohms

Int1 - pointer to (currently unused) variable

IntDelta - pointer to variable to receive internal precision, in ohms

Capabilities - pointer to variable to receive capability flags (see below)

Returns:

Zero for success, or non-zero error code.

Capabilities Bit Flag Definitions

Capability bits are as follows:

0x00000008 - RES_CAP_REF (supports reference calibration value)

0x00000004 - RES_CAP_INF (supports setting "open-circuit")

0x00000002 - RES_CAP_ZERO (supports setting "zero ohms")

0x00000001 - RES_CAP_PREC (precision resistor - supporting function
PIL_ResSetResistance etc.)

0x00000000 - RES_CAP_NONE (no special capabilities)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

261

Corresponding enumerated constants are provided in Pilpxi.h.

Notes

MinRes and MaxRes are the minimum and maximum values that can be set in the
sub-unit's continuous range of adjustment. If capability RES_CAP_ZERO is
flagged a setting of "zero ohms" is also possible. If RES_CAP_INF is flagged an
open-circuit setting is also possible.

If capability RES_CAP_REF is flagged, RefRes is the reference resistance value -
 such as in model 40-265, where it gives the balanced state resistance.

PrecPC and PrecDelta represent the sub-unit's precision specification, such as
(±0.2%, ±0.1 ohms).

IntDelta is the notional precision to which the sub-unit works internally; this value
will be less than or equal to the figure indicated by PrecPC and PrecDelta,
indicating greater internal precision.

Where information is not available for the sub-unit concerned, null values are
returned.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

262

Set Resistance Value (Visual C++)

Description

Sets a programmable resistor to the closest available setting to the value
specified. This function is only usable with programmable resistor models that
support it: such capability is indicated in the result of PIL_ResInfo.

If the sub-unit permits, the resistance value can be set to:

• zero ohms (nominally), by passing the resistance value 0.0
• infinity, by passing the resistance value HUGE_VAL (#include <math.h>);

or alternatively by using function PIL_ClearSub

The resistance value actually set can be found using PIL_ResGetResistance.

Prototype

DWORD _stdcall PIL_ResSetResistance(DWORD CardNum, DWORD OutSub,
DWORD Mode, double Resistance);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Mode - the resistance setting mode (see below)

Resistance - the resistance value to set

Returns:

Zero for success, or non-zero error code.

Mode value

A value indicating how the given resistance value is to be applied. Only one mode
is currently supported:

Value Ident Function

0 RES_MODE_SET Set resistance to the specified value

Note

In programmable resistor models having gapped ranges, resistance values falling
within such gaps are not coerced. For example, in a unit supporting settings:

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

263

• zero ohms
• 100 - 200 ohms continuously variable
• infinity

attempting to set values above zero but below 100 ohms, or above 200 ohms but
less than infinity, gives error ER_BAD_RESISTANCE.

Related functions

PIL_ResInfo

PIL_ResGetResistance

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

264

Programmable Potentiometer

Programmable Potentiometer

This section details the use in Visual C++ of functions specific to programmable
potentiometer sub-units.

No potentiometer-specific functions are currently provided.

A potentiometer such as model 40-296 is represented logically as a
programmable resistor (RES type) having twice the number of switched bits as its
nominal resolution, i.e. a 24-bit potentiometer returns the type description
RES(48). To make the unit behave correctly appropriate bit-patterns must be set
in the upper and lower halves using general purpose output function
PIL_WriteSub (or PIL_WriteSubArray). Transient effects must be expected when
changing the wiper position; provided MODE_NO_WAIT is not in force resistance
values can only be transiently high.

Note that a potentiometer's state at power-up and when cleared is as a device of
twice the nominal resistance with its wiper centred.

WARNING

Mis-programming can result in the potentiometer presenting a lower than normal
resistance between its end terminals - in the worst case zero ohms.

Non-volatile (EEPROM) storage of calibration values is supported through the
functions PIL_ReadCal and PIL_WriteCal.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

265

Programmable RF Attenuator

Programmable RF Attenuator

This section details the use in Visual C++ of functions specific to programmable
RF attenuator sub-units.

Specific functions are provided to:

• Obtain attenuator information, in numeric format: PIL_AttenInfo
• Obtain attenuator description, in string format: PIL_AttenType
• Set an attenuation level, in dB: PIL_AttenSetAttenuation
• Obtain the current attenuation setting, in dB: PIL_AttenGetAttenuation
• Obtain the value of each individual attenuator pad, in dB:

PIL_AttenPadValue

RF attenuator sub-units can also be controlled using general purpose output
functions such as PIL_WriteSub. This allows the explicit selection of particular pad
patterns that may in some circumstances yield improved RF performance.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

266

Get attenuation (Visual C++)

Description

Obtains the current attenuation setting.

Prototype

DWORD _stdcall PIL_AttenGetAttenuation(DWORD CardNum, DWORD
SubNum, float *Atten);

Parameters:

CardNum - card number

SubNum - sub-unit number

Atten - pointer to variable to receive the attenuation value, in dB

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

267

Attenuator information (Visual C++)

Description

Obtains a description of an RF attenuator sub-unit, as numeric values.

Prototype

DWORD _stdcall PIL_AttenInfo(DWORD CardNum, DWORD SubNum, DWORD
*TypeNum, DWORD *NumSteps, float *StepSize);

Parameters:

CardNum - card number

SubNum - sub-unit number

TypeNum - pointer to variable to receive type code

NumSteps - pointer to variable to receive step count

StepSize - pointer to variable to receive step size, in dB

Returns:

Zero for success, or non-zero error code.

Results

RF attenuator sub-unit type code is:

8 - TYPE_ATTEN (programmable RF attenuator)

A corresponding enumerated constant is provided in Pilpxi.h.

Note

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads in the attenuator can be obtained using
PIL_SubInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

268

Attenuator pad value (Visual C++)

Description

Obtains the attenuation value of a numbered pad.

Prototype

DWORD _stdcall PIL_AttenPadValue(DWORD CardNum, DWORD SubNum,
DWORD PadNum, float *Atten);

Parameters:

CardNum - card number

SubNum - sub-unit number

PadNum - pad number

Atten - pointer to variable to receive the pad's attenuation value, in dB

Returns:

Zero for success, or non-zero error code.

Note

This function facilitates explicit pad selection using PIL_OpBit or PIL_WriteSub, if
the selections made by PIL_AttenSetAttenuation are not optimal for the
application.

The number of pads in the sub-unit can be found using PIL_SubInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

269

Set attenuation (Visual C++)

Description

Sets the attenuation to the specified value.

Prototype

DWORD _stdcall PIL_AttenSetAttenuation(DWORD CardNum, DWORD
SubNum, float Atten);

Parameters:

CardNum - card number

SubNum - sub-unit number

Atten - the attenuation value to set, in dB

Returns:

Zero for success, or non-zero error code.

Note

The combination of pads inserted to achieve the desired attenuation level is
determined by the driver for best all-round performance. In some models it may
be possible to optimise particular aspects of attenuator performance by setting
other pad combinations explicitly using PIL_OpBit or PIL_WriteSub. The pad value
associated with each output channel can be discovered with PIL_AttenPadValue.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

270

Attenuator type (Visual C++)

Description

Obtains a description of an attenuator sub-unit, as a text string.

Prototype

DWORD _stdcall PIL_AttenType(DWORD CardNum, DWORD SubNum, CHAR
*Str);

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - pointer to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Result

The format of the result is "ATTEN(<number of steps>,<step size in dB>)".

Notes

A more secure version of this function exists as PIL_AttenType_s.

The length of the result string will not exceed the value of driver constant
MAX_ATTEN_TYPE_STR.

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads employed in the attenuator can be
obtained using PIL_SubType.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

271

Power Supplies

Power Supply functions

This section details the use in Visual C++ of functions specific to power supply
sub-units.

Specific functions are provided to:

• Obtain power supply description, in string format: PIL_PsuType
• Obtain power supply information, in numeric format: PIL_PsuInfo
• Set power supply output voltage: PIL_PsuSetVoltage
• Obtain a power supply's current voltage setting: PIL_PsuGetVoltage
• Enable/disable a power supply's output: PIL_PsuEnable

Other functions that are relevant to operation of power supply sub-units include:

• Clear a power supply (restore start-up state): PIL_ClearSub
• Obtain power supply status information: PIL_SubStatus
• Retrieve a calibration value from non-volatile memory (some models):

PIL_ReadCal
• Store a calibration value in non-volatile memory (some models):

PIL_WriteCal

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

272

Power Supply - enable/disable output (Visual C++)

Description

Enables or disables a power supply's output.

Prototype

DWORD _stdcall PIL_PsuEnable(DWORD CardNum, DWORD SubNum, BOOL
State);

Parameters:

CardNum - card number

SubNum - sub-unit number

State - 1 to enable, 0 to disable output

Returns:

Zero for success, or non-zero error code.

Note

This function is usable only with sub-units having the capability
PSU_CAP_OUTPUT_CONTROL - see PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

273

Power Supply - Get Voltage (Visual C++)

Description

Obtains the voltage setting of a power supply sub-unit.

Prototype

DWORD _stdcall PIL_PsuGetVoltage(DWORD CardNum, DWORD SubNum,
double *Voltage);

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - pointer to variable to receive the output setting, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which may be affected by device tolerances,
current-limit conditions etc.).

This function is also usable with fixed-voltage supplies, returning the nominal
output voltage.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

274

Power Supply - Information (Visual C++)

Description

Obtains a description of a power supply sub-unit, as numeric values.

Prototype

DWORD _stdcall PIL_PsuInfo(DWORD CardNum, DWORD SubNum, DWORD
*TypeNum, double *Voltage, double *Current, DWORD *Precis, DWORD
*Capabilities);

Parameters:

CardNum - card number

SubNum - sub-unit number

TypeNum - pointer to variable to receive type code

Voltage - pointer to variable to receive rated voltage (in Volts)

Current - pointer to variable to receive rated current (in Amps)

Precis - pointer to variable to receive precision (in bits, meaningful only for
programmable supplies)

Capabilities - pointer to variable to receive capability flags (see below)

Returns:

Zero for success, or non-zero error code.

Results

Power supply sub-unit type code is:

9 - TYPE_PSUDC (DC power supply)

A corresponding enumerated constant is provided in Pilpxi.h.

Capability flag bit definitions:

0x00000010 - PSU_CAP_CURRENT_MODE_SENSE (can sense if operating in
current-limited mode)

0x00000008 - PSU_CAP_PROG_CURRENT (output current is programmable)

0x00000004 - PSU_CAP_PROG_VOLTAGE (output voltage is programmable)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

275

0x00000002 - PSU_CAP_OUTPUT_SENSE (has logic-level sensing of output
active state)

0x00000001 - PSU_CAP_OUTPUT_CONTROL (has output on/off control)

Certain driver functions are only usable with sub-units having appropriate
capabilities - examples being:

PIL_PsuEnable

PIL_PsuSetVoltage

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

276

Power Supply - Set Voltage (Visual C++)

Description

Sets the output voltage of a power supply sub-unit to the specified value.

Prototype

DWORD _stdcall PIL_PsuSetVoltage(DWORD CardNum, DWORD SubNum,
double Voltage);

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - the output voltage to set, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The voltage value specified is rounded to the precision of the supply's DAC. The
actual voltage setting can be obtained using PIL_PsuGetVoltage.

This function is usable only with sub-units having the capability
PSU_CAP_PROG_VOLTAGE - see PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

277

Power Supply - Type (Visual C++)

Description

Obtains a description of a power supply sub-unit, as a text string.

Prototype

DWORD _stdcall PIL_PsuType(DWORD CardNum, DWORD SubNum, CHAR
*Str);

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - pointer to character string to receive the result

Returns:

Zero for success, or non-zero error code.

Result

For a DC power supply the format of the result is "PSUDC(<rated
voltage>,<rated current>)".

Notes

A more secure version of this function exists as PIL_PsuType_s.

The length of the result string will not exceed the value of driver constant
MAX_PSU_TYPE_STR.

More detailed information on power supply characteristics is obtainable in numeric
format, using PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

278

Battery Simulator

Battery Simulator

This section details the use in Visual C++ of functions specific to battery
simulator models.

Models 41-750-001 and 41-751-001

No special-purpose functions are implemented for these models - they are
operable using general-purpose input-output functions. See:

40-750-001

40-751-001

Model 41-752-001

Model 41-752-001 is implemented as an array of BATT sub-units, employing the
following special-purpose functions for normal operation:

• Set output voltage: PIL_BattSetVoltage
• Obtain the present output voltage setting: PIL_BattGetVoltage
• Set sink current: PIL_BattSetCurrent
• Obtain the present sink current setting: PIL_BattGetCurrent
• Set output enable states: PIL_BattSetEnable
• Obtain present output enable states: PIL_BattGetEnable
• Obtain the present state of the hardware interlock:

PIL_BattReadInterlockState

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

279

Battery Simulator - set voltage (Visual C++)

Description

Sets the output voltage of battery simulator (BATT type) sub-units.

Prototype

DWORD _stdcall PIL_BattSetVoltage(DWORD CardNum, DWORD SubNum,
double Voltage);

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - the output voltage to set, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function sets the voltage of
that sub-unit alone.

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), all of the card's BATT sub-units
are set to the given voltage.

The voltage value specified is rounded to the precision of the sub-unit's DAC. The
actual voltage setting can be obtained using PIL_BattGetVoltage.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

280

Battery Simulator - get voltage (Visual C++)

Description

Obtains the voltage setting of a battery simulator (BATT type) sub-unit, as set by
PIL_BattSetVoltage.

Prototype

DWORD _stdcall PIL_BattGetVoltage(DWORD CardNum, DWORD SubNum,
double *Voltage);

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - pointer to variable to receive the output setting, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which could be affected by conditions such as
current-limiting).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

281

Battery Simulator - set current (Visual C++)

Description

Sets the output sink current of battery simulator (BATT type) sub-units.

Prototype

DWORD _stdcall PIL_BattSetCurrent(DWORD CardNum, DWORD SubNum,
double Current);

Parameters:

CardNum - card number

SubNum - sub-unit number

Current - the output sink current to set, in Amps

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function sets the sink current
of that sub-unit alone.

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), all of the card's BATT sub-units
are set to the given current.

For non-zero values, output sink current is set to the nearest available value
greater than that specified, typically using a low-precision DAC (e.g. 4-bit). The
actual sink current setting can be obtained using PIL_BattGetCurrent.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

282

Battery Simulator - get current (Visual C++)

Description

Obtains the current sink setting of a battery simulator (BATT type) sub-unit, as
set by PIL_BattSetCurrent.

Prototype

DWORD _stdcall PIL_BattGetCurrent(DWORD CardNum, DWORD SubNum,
double *Current);

Parameters:

CardNum - card number

SubNum - sub-unit number

Current - pointer to variable to receive the output setting, in Amps

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

283

Battery Simulator - set enable (Visual C++)

Description

Sets the output enable pattern of battery simulator (BATT type) sub-units.

Prototype

DWORD _stdcall PIL_BattSetEnable(DWORD CardNum, DWORD SubNum,
DWORD Pattern);

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - the pattern of output enables to set

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function sets the output
enable state of that sub-unit alone according to the least significant bit of Pattern
(0 = OFF, 1 = ON).

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), enable states of all the card's
BATT sub-units are set; bits in the supplied Pattern are utilised in ascending order
of BATT sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered BATT sub-unit (0 = OFF, 1 =
ON)

Pattern bit 1 = enable state of next numbered BATT sub-unit (0 = OFF, 1 =
ON)

etc.

Note that the operation can fail (returning ER_EXECUTION_FAIL) if a necessary
hardware interlock is disconnected.

The present enable pattern can be obtained using PIL_BattGetEnable.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

284

Battery Simulator - get enable (Visual C++)

Description

Obtains the output enable pattern of battery simulator (BATT type) sub-units.

Prototype

DWORD _stdcall PIL_BattGetEnable(DWORD CardNum, DWORD SubNum,
DWORD *Pattern);

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - pointer to variable to receive the output enable pattern

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function gets the output
enable state of that sub-unit alone in the least significant bit of Pattern (0 = OFF,
1 = ON).

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), enable states of all the card's
BATT sub-units are obtained; bits in Pattern are assigned in ascending order of
BATT sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered BATT sub-unit (0 = OFF, 1 =
ON)

Pattern bit 1 = enable state of next numbered BATT sub-unit (0 = OFF, 1 =
ON)

etc.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

285

Battery Simulator - read interlock state (Visual C++)

Description

Obtains the present state of a hardware interlock associated with battery
simulator (BATT type) sub-units.

Prototype

DWORD _stdcall PIL_BattReadInterlockState(DWORD CardNum, DWORD
SubNum, BOOL *Interlock);

Parameters:

CardNum - card number

SubNum - sub-unit number

Interlock - pointer to variable to receive the interlock state

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a BATT sub-unit, the function gets the state of the
hardware interlock associated with that sub-unit:

0 = interlock is "down"

1 = interlock is "up"

If SubNum = 0 (BATT_ALL_BATT_SUB_UNITS), the function gets the summary
state of all BATT sub-unit interlocks :

0 = one or more interlocks is "down"

1 = all interlocks are "up"

Model 41-752-001 has a single global interlock affecting all channels, and both
modes above yield the same result.

Interlock "up" state is hardware-latched from the physical wired interlock by the
action of PIL_BattSetEnable, when that function succeeds. Hence:

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

286

• If the "up" state is indicated, the physical interlock has remained intact
and outputs are enabled as previously set by PIL_BattSetEnable.

• If the "down" state is indicated, the physical interlock has been broken
and all outputs will have been disabled automatically through hardware.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

287

Thermocouple Simulator

Thermocouple Simulator

This section details the use in Visual C++ of functions specific to thermocouple
simulator models.

Thermocouple simulators are implemented as an array of VSOURCE sub-units,
employing the following special-purpose functions for normal operation:

• Set output voltage range: PIL_VsourceSetRange
• Obtain the present output range selection: PIL_VsourceGetRange
• Set output voltage: PIL_VsourceSetVoltage
• Obtain the present output voltage setting: PIL_VsourceGetVoltage
• Set output enable states: PIL_VsourceSetEnable
• Obtain present output enable states: PIL_VsourceGetEnable

The following standard functions are used to operate the monitoring multiplexer:

• Disconnect all channels: PIL_ClearSub
• Connect/disconnect a channel: PIL_OpBit
• Obtain the present channel selection: PIL_ViewSub

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

288

Voltage source - set range (Visual C++)

Description

Selects the output voltage range of voltage source (VSOURCE type) sub-units
that have this capability.

Prototype

DWORD _stdcall PIL_VsourceSetRange(DWORD CardNum, DWORD SubNum,
double Range);

Parameters:

CardNum - card number

SubNum - sub-unit number

Range - the output voltage range to select, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

Only positive range values are currently accepted, irrespective of whether the
sub-unit has positive voltage, negative voltage, or bipolar capability.

For a valid range selection the supplied range value must be acceptably close to a
range supported by the sub-unit.

The present range selection can be obtained using PIL_VsourceGetRange.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

289

Voltage source - get range (Visual C++)

Description

Obtains the range setting of a voltage source (VSOURCE type) sub-unit, as set by
PIL_VsourceSetRange.

Prototype

DWORD _stdcall PIL_VsourceGetRange(DWORD CardNum, DWORD SubNum,
double *Range);

Parameters:

CardNum - card number

SubNum - sub-unit number

Range - pointer to variable to receive the output range setting, in Volts

Returns:

Zero for success, or non-zero error code.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

290

Voltage source - set voltage (Visual C++)

Description

Sets the output voltage of voltage source (VSOURCE type) sub-units.

Prototype

DWORD _stdcall PIL_VsourceSetVoltage(DWORD CardNum, DWORD SubNum,
double Voltage);

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - the output voltage to set, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The voltage value specified is rounded to the precision of the sub-unit's DAC. The
actual voltage setting can be obtained using PIL_VsourceGetVoltage.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

291

Voltage source - get voltage (Visual C++)

Description

Obtains the output setting of a voltage source (VSOURCE type) sub-unit, as set
by PIL_VsourceSetVoltage.

Prototype

DWORD _stdcall PIL_VsourceGetVoltage(DWORD CardNum, DWORD SubNum,
double *Voltage);

Parameters:

CardNum - card number

SubNum - sub-unit number

Voltage - pointer to variable to receive the output setting, in Volts

Returns:

Zero for success, or non-zero error code.

Notes

The result is the nominal value to which the output has been set, not necessarily
the actual voltage being output (which could be affected by conditions such as
current-limiting).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

292

Voltage source - set enable (Visual C++)

Description

Sets the output enable pattern of voltage source (VSOURCE type) sub-units.

Prototype

DWORD _stdcall PIL_VsourceSetEnable(DWORD CardNum, DWORD SubNum,
DWORD Pattern);

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - the pattern of output enables to set

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a VSOURCE sub-unit, the function sets the output
enable state of that sub-unit alone according to the least significant bit of Pattern
(0 = OFF, 1 = ON).

If SubNum = 0 (VSOURCE_ALL_VSOURCE_SUB_UNITS), enable states of all the
card's VSOURCE sub-units are set; bits in the supplied Pattern are utilised in
ascending order of VSOURCE sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered VSOURCE sub-unit (0 = OFF,
1 = ON)

Pattern bit 1 = enable state of next numbered VSOURCE sub-unit (0 = OFF, 1
= ON)

etc.

The present enable pattern can be obtained using PIL_VsourceGetEnable.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

293

Voltage source - get enable (Visual C++)

Description

Obtains the output enable pattern of voltage source (VSOURCE type) sub-units,
as set by PIL_VsourceSetEnable.

Prototype

DWORD _stdcall PIL_VsourceGetEnable(DWORD CardNum, DWORD SubNum,
DWORD *Pattern);

Parameters:

CardNum - card number

SubNum - sub-unit number

Pattern - pointer to variable to receive the output enable pattern

Returns:

Zero for success, or non-zero error code.

Notes

When SubNum corresponds to a VSOURCE sub-unit, the function gets the output
enable state of that sub-unit alone in the least significant bit of Pattern (0 = OFF,
1 = ON).

If SubNum = 0 (VSOURCE_ALL_VSOURCE_SUB_UNITS), enable states of all the
card's VSOURCE sub-units are obtained; bits in Pattern are assigned in ascending
order of VSOURCE sub-unit, i.e.

Pattern bit 0 = enable state of lowest numbered VSOURCE sub-unit (0 = OFF,
1 = ON)

Pattern bit 1 = enable state of next numbered VSOURCE sub-unit (0 = OFF, 1
= ON)

etc.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

294

Mode Control

Mode Control

This section details the use in Visual C++ of functions controlling the driver's
operation.

This feature is implemented through a single function: PIL_SetMode.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

295

Set Mode (Visual C++)

Description

Allows control flags affecting the driver's global behaviour to be set and read. This
function gives access to low-level control features of the Pilpxi driver and is
intended for 'expert' use only - the default driver behaviour should be satisfactory
for the great majority of applications.

Prototype

DWORD _stdcall PIL_SetMode(DWORD ModeFlags);

Parameters:

ModeFlags - new value for driver mode flags

Returns:

The driver's mode flags prior to executing this function.

Flag Bit Definitions

Flag bits are as follows:

0x00000000 - MODE_DEFAULT (standard operating mode)

0x00000001 - MODE_NO_WAIT (sequencing and settling time delays disabled)

0x00000002 - MODE_UNLIMITED (closure limits disabled - see Warning
below)

0x00000004 - MODE_REOPEN (allow re-opening without clearing cards)

0x00000008 - MODE_IGNORE_TEST (enable card operation even if selftest
fails - see Warning below)

Corresponding enumerated constants are provided in Pilpxi.h.

Warning - MODE_UNLIMITED

Use of MODE_UNLIMITED to disable the limit on the maximum number of switch
closures permitted on high-density cards is not recommended, because it carries
the danger of overheating and consequent damage to both the card itself and the
system in which it is installed. See Closure Limits.

Warning - MODE_IGNORE_TEST

The MODE_IGNORE_TEST feature should be used with extreme caution. If a
defective card is forcibly enabled, under some fault conditions a large number of
outputs could be energised spuriously, resulting in overheating and consequent
damage to both the card itself and the system in which it is installed. The
intended purpose of this feature is to allow continued operation of a BRIC unit

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

296

from which a daughtercard has been removed for maintenance. See BRIC
Operation.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

297

Borland C++

Borland C++

The following files are required for Borland C++:

• Pilpxi.h
• Pilpxi.lib
• Pilpxi.dll

Use the Help information for Visual C++. The Visual C++ code sample
PILDEMO.C is also usable in Borland C++.

Pilpxi.h and Pilpxi.lib must be accessible by Borland C++ at compile-time.
Typically, copies of these files can be placed in the folder containing your
application's source files; alternatively your Borland C++ project may be
configured to access them in their installed location (or some other centralized
location). Pilpxi.lib must be added to the list of linked files for the project.

Pilpxi.dll must be accessible by your application at run-time. Windows searches a
number of standard locations for DLLs in the following order:

1. The directory containing the executable module.
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories listed in the PATH environment variable.

Placing Pilpxi.dll in one of the Windows directories has the advantage that a single
copy serves any number of applications that use it, but does add to the clutter of
system DLLs stored there. The Pickering Setup program places a copy of Pilpxi.dll
in the Windows system directory.

Note

The version of Pilpxi.lib for Borland C++ differs from that for Visual C++. Link
errors will result if the wrong version is used.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

298

Pilpxi and LabWindows/CVI

Since LabWindows/CVI is based on VISA, the pipx40 VISA driver will usually be
preferred for use with it.

However use of the Pilpxi driver does permit standalone applications to be
created that are not reliant on VISA, provided it is not required by other devices
in the system. Such use is supported by Function Panel library pilpxi.fp.

Note that the Pilpxi driver is incompatible with the LabWindows/CVI Real-Time
Module, for which use of pipx40 is essential.

LabWindows is a trademark of National Instruments Corporation.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

299

Pilpxi and LabVIEW

Since LabVIEW is based on VISA, the pipx40 VISA driver will usually be preferred
for use with it.

However use of the Pilpxi driver does permit standalone applications to be
created (using Application Builder) that are not reliant on VISA, provided it is not
required by other devices in the system. Such use is supported by LabVIEW
library PILPXI.llb.

Note that the Pilpxi driver is incompatible with the LabVIEW Real-Time Module,
for which use of pipx40 is essential.

LabVIEW is a trademark of National Instruments Corporation.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

300

Utility Programs

Utility Programs

The Pilpxi driver is supported by a number of utility programs:

• Test Panels
• Terminal Monitor
• Demonstration Program
• Diagnostic Utility

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

301

Test Panels

The Test Panels application allows any combination of cards to be controlled using
a graphical interface.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

302

Terminal Monitor

PILMon is a simple terminal monitor program for Pickering PXI cards. Use the HE
command within PILMon to obtain help.

PILMon requires Pilpxi.dll and Ucomm32.dll.

PILMon has a number of command-line options when starting the program. For
instructions, in a Command Prompt window with the current directory set to that
containing PILMon, type:

PILMON -?

C:\Pickering\Utils>pilmon -?

Program: PIL PXI Monitor

Syntax: PILMon [-cN] [-r] [-n]

Arguments: -cN specifies the number of the COM port (1 thru 9) to use

 in lieu of the console. COM settings are 9600/8/N/1.

 -r specifies that when run PILMon should attempt to open

 the cards without clearing them. This may or may not be

 possible.

 -n specifies that when run PILMon should NOT automatically

 open the cards. Overrides -r if both are used.

Options are accepted in any order.

Example: PILMon -c2 -r -n

The action of many PILMon commands corresponds closely to Pilpxi driver
functions (hyperlinks here access the Visual C++ function references):

 Pilpxi driver function

Corresponding
PILMon command

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

303

Initialise

Initialise all cards PIL_OpenCards OC

Initialise single card PIL_OpenSpecifiedCard VO (see note 1)

Close

Close all cards PIL_CloseCards CC

Close single card PIL_CloseSpecifiedCard VC (see note 1)

Card ID, Properties and
Status

Get card identification PIL_CardId See note 2

Get card location PIL_CardLoc See note 2

Get sub-unit closure
limit PIL_ClosureLimit CL

Get count of unopened
cards PIL_CountFreeCards CF

Get diagnostic
information PIL_Diagnostic DI

Get sub-unit counts PIL_EnumerateSubs See note 2

Get locations of
unopened cards PIL_FindFreeCards LF

Get sub-unit settling
time PIL_SettleTime SE

Get card status PIL_Status ST

Get sub-unit information PIL_SubInfo See note 2

Get sub-unit description PIL_SubType See note 2

Get driver version PIL_Version See Note 3

Output Operations

Clear outputs of all
open cards PIL_ClearAll RS

Clear a single card's
outputs PIL_ClearCard AR

Clear a sub-unit's
outputs PIL_ClearSub CS

Set or clear a single
output PIL_OpBit SC and SO

Set or clear a matrix
crosspoint PIL_OpCrosspoint XC and XO

Set a sub-unit's output
pattern PIL_WriteSub SB

 PIL_WriteSubArray

Get a single output's
state PIL_ViewBit SV

Get a matrix
crosspoint's state PIL_ViewCrosspoint XV

Get a sub-unit's output PIL_ViewSub BV

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

304

pattern

 PIL_ViewSubArray

Output Masking

Clear a sub-unit's mask PIL_ClearMask CM

Set or clear a single
output's mask PIL_MaskBit SM

Set or clear a matrix
crosspoint's mask PIL_MaskCrosspoint XM

Set a sub-unit's mask
pattern PIL_WriteMask MB

 PIL_WriteMaskArray

Get a single output's
mask state PIL_ViewMaskBit MS

Get a matrix
crosspoint's mask state PIL_ViewMaskCrosspoint XS

Get a sub-unit's mask
pattern PIL_ViewMask MV

 PIL_ViewMaskArray

Output Calibration
(integer type)

Read an output's
calibration value PIL_ReadCal RC

Write an output's
calibration value PIL_WriteCal WC

Input Operations

Read single input PIL_ReadBit IS

Read input sub-unit
pattern PIL_ReadSub BR

Mode Control

Set driver mode PIL_SetMode DM

Notes

1. Normally when PILMon is started it immediately takes control of all cards
using the PIL_OpenCards mechanism. In order to use the
PIL_OpenSpecifiedCard mechanism, PILMon must be started from the
command-line with the "-n" option specified.

2. Where noted, the information obtained by this function is displayed as part
of the output from the PILMon LS command.

3. The value returned by PIL_Version is displayed when PILMon is started as
"Pilpxi Driver version number".

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

305

Demonstration Program

PILDemo is a simple console-based demonstration program that exercises all
installed Pickering cards, using many of the driver's functions.

The operations performed are as follows:

• the installed cards are listed
• each input sub-unit (if any) of each card is read once

Then, if one or more output sub-units is present:

• where possible, for each sub-unit in turn: all outputs are activated
simultaneously, then de-activated (using PIL_WriteSub())

• where possible, for each sub-unit in turn: all outputs are activated
simultaneously, then de-activated (using PIL_WriteSubArray())

• the program cycles indefinitely, activating each output individually in turn

A dwell delay (nominally 10 milliseconds) is provided between each state-change.

The program requires Pilpxi.dll.

WARNING

THIS PROGRAM ACTIVATES OUTPUTS BOTH INDIVIDUALLY AND IN
COMBINATIONS. IT SHOULD NOT BE RUN UNDER ANY CONDITIONS WHERE
DAMAGE COULD RESULT FROM SUCH EVENTS. FOR GREATEST SAFETY IT
SHOULD BE RUN ONLY WHEN NO EXTERNAL POWER IS APPLIED TO ANY CARD.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

306

Diagnostic Utility

The Plug & Play functionality of PXI cards generally ensures trouble-free
installation. However in the event of any problems, it may be helpful to know how
cards have been configured in the system. The PipxDiag Windows diagnostic
utility generates an extensive report showing the allocations of PCI/PXI system
resources and specific details of installed Pickering cards, highlighting any
potential configuration issues.

In the diagnostic report, all the installed Pickering cards should be listed in the
"Pilpxi information" section - if one or more cards is missing it may be possible to
determine the reason by referring to the PCI configuration dump contained in the
report, but interpretation of this information is far from straightforward, and the
best course is to contact Pickering support: support@pickeringtest.com, if
possible including a copy of the diagnostic report.

In the "VISA information" section, if VISA is not installed its absence will be
reported. This does not affect operation using the Direct I/O driver, and is not a
problem unless you also wish to use VISA. VISA is a component of National
Instruments LabWindows/CVI and LabVIEW, or is available as a standalone
environment.

If VISA is present and is of a sufficiently recent version, the section "Pipx40
information" should contain a listing similar to "Pilpxi information".

Please note that the Diagnostic Utility cannot access cards if they are currently
opened by some other application, such as the Test Panels or Terminal Monitor.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

307

Application Notes

Application Notes

This section contains application notes on the following topics:

• BRIC Operation
• Closure Limits
• Execution Speed
• Isolation Switching
• Multiprocessing and Multithreading
• Simple Programmable Resistor Cards
• Segmented Matrix
• Unsegmented Matrix

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

308

BRIC Operation

BRIC closure limits

As with other high-density units, for a BRIC the Pilpxi driver imposes a limit on
the maximum number of channel closures - see Closure Limits. Although
PIL_SetMode offers a means of disabling this limit, the extraordinarily high
packing density in BRIC units makes observation of maximum closure limits
particularly important. The consequences of turning on an excessive number of
crosspoints can be appreciated from the fact that each activated crosspoint may
consume around 10mA at 5V (50mW, or 1W per 20 crosspoints). The power
consumption of a large BRIC with all crosspoints energised would be beyond the
capacity of the system power supply and backplane connectors, never mind its
cooling capabilities. For this reason BRIC units are fuse-protected against
overcurrent. However, it cannot protect against local hot-spots within a BRIC if
too large a block of physically adjacent crosspoints is energised. Although the
fuse is self-resetting under moderate overload, a massive overload may cause it
to rupture permanently.

BRIC daughtercard removal

In the event of a BRIC daughtercard being removed for servicing, operation of the
entire unit is normally disabled. It is possible to allow continued operation in spite
of this fault condition using the MODE_IGNORE_TEST option bit in PIL_SetMode.
When this mode is set, the tests performed when the card is opened will still
detect the fault and flag it in the card's PIL_Status value (bit STAT_HW_FAULT =
set); however it will no longer be flagged as disabled (bit STAT_DISABLED =
clear), allowing continued operation.

Multifunction BRICs

Multifunction BRICs have independently controlled isolation switches. In operating
these units it is advised that where hot-switching occurs programmers ensure
that matrix crosspoint relays hot-switch, and isolation relays cold-switch. This
avoids concentrating the contact wear caused by hot-switching in the isolation
relays, which could lead to a reduction in their operational life. The preferred
operating sequences for hot-switching are:

• When closing a crosspoint, first close the isolation switch, then the
crosspoint switch

• When opening a crosspoint, first open the crosspoint, then the isolation
switch

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

309

Closure Limits

The high switch density attained in certain System 40/45/50 cards, particularly
high-density matrix types, necessitates close packing of relays and airflow is quite
restricted. If excessive numbers of relays were energised for a prolonged period
overheating could occur. For example, in model 40-531 simultaneous
energisation of all 256 relays would yield a power dissipation of around 17W. In
BRIC units the situation is even more extreme - see BRIC Operation. To guard
against this danger the software driver places a limit on the number of
crosspoints that can be energised simultaneously. The limits imposed by the
driver are set with regard to operating temperature levels and will not cause any
difficulty for typical matrix usage, where only a small proportion of crosspoints
are simultaneously ON. A sub-unit's closure limit can be discovered using the
PIL_ClosureLimit function (see reference for Visual Basic / Visual C++).

In some models, energisation of too many relays would cause the card's supply
current to exceed the maximum available from the system backplane, with the
potential for overheating and damage to the card and backplane connectors.

The software driver does however provide a method of disabling this protection.
Calling the function PIL_SetMode (see reference for Visual Basic / Visual C++)
with the bit MODE_UNLIMITED set allows an unlimited number of crosspoints to
be energised simultaneously. This feature should be used with EXTREME
CAUTION. Although it may be safe to energise larger numbers of crosspoints
where ON times are short and duty cycle is low, it must be borne in mind that if
the user's program were to halt in the ON state (for example at a breakpoint
when debugging) the danger of overheating is present.

Some models incorporate fuses to protect against simultaneous activation of a
hugely excessive number of channels. These are self-resetting in moderate
overload, and operation will be restored when the fault condition clears.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

310

Execution Speed

Internal optimisations

Generally, the Pilpxi driver optimises a card's internal switch operations as far as
possible. For example in a single-channel multiplexer (MUX type) with isolation
switching, if a channel-change is requested the isolation switch is not cycled. This
saves both time and mechanical wear on the switch.

Break-before-make action

By default, the Pilpxi driver enforces Break-Before-Make (BBM) action and settling
delays (to cope with contact bounce) on all switching operations. This ensures
'clean' switching actions and minimises the danger of switch damage due to
conflicting contact closures.

For time-critical applications the driver can be set to omit all sequencing delays
using the MODE_NO_WAIT option of PIL_SetMode - see reference for Visual Basic
/ Visual C++. This causes the driver to return control to the application program
in the shortest possible time. The function PIL_Status (see reference for Visual
Basic / Visual C++) can then be used at a later time to determine when
operations on a particular card have completed (indicated by the bit STAT_BUSY
becoming clear). By this method a number of switching operations (and/or other
program activity) can be executed in parallel rather than sequentially. However
the programmer must guard against switch conflicts that might transiently cause,
say, the shorting of a power supply and consequent switch damage.

In some cards (for example model 40-745), making an individual channel
selection involves several physical relays. Normally, sequencing delays are
imposed to ensure that no unwanted transient connections occur. Setting
MODE_NO_WAIT bypasses these delays, and the programmer must bear in mind
the potential for transient conflicts.

Default driver action is restored by executing PIL_SetMode with the
MODE_NO_WAIT bit clear.

Many System 40/45/50 relay cards exhibit very short basic execution times in the
order of a few tens of microseconds; however BBM and settling delays associated
with relays may extend from a few hundred microseconds (for small reed relays)
to some tens of milliseconds (for microwave switches). Here, setting
MODE_NO_WAIT and appropriate programming can free a significant amount of
CPU time for other purposes.

There are some exceptions to the above: for example digital outputs generally
have zero settling time and MODE_NO_WAIT offers no performance advantage.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

311

To summarise, where execution speed is of paramount importance setting
MODE_NO_WAIT can offer significant advantages for many cards; however it is
more demanding for the programmer, requiring an understanding of the
operational characteristics of specific card types and taking greater account of
conditions in the switched circuits.

Processor speed

A faster processor might be expected to yield faster operation. However for many
cards much of a function's execution time is spent waiting for switch contacts to
stabilise, so unless MODE_NO_WAIT is invoked little improvement will be seen.
Further, modern processors are capable of operating many cards near or beyond
their hardware limits, and the Pilpxi driver includes timing control to ensure
reliable operation. Therefore increases in processor speed beyond about 3GHz
may well give no actual improvement in operating speed.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

312

Isolation Switching

Isolation switching is incorporated in particular models for a variety of reasons:

• Reducing capacitive loading on a node. In low-frequency units, reduced
capacitive loading gives faster response times when medium to high
impedance signals are being carried.

• Reducing circuit leakage current. Reduced leakage current in the switch
circuits is advantageous where low-current measurements are involved.

• Reducing the length of circuit stubs on a node. In high-frequency units,
reduced stub lengths give better RF performance.

• Providing alternate switching functionality. Some versatile models utilise
isolation switching to support additional operating modes.

A related feature is loopthru switching, which provides a default connection path
when no other path is selected.

Automatic isolation and loopthru switching

Isolation and loopthru switches are normally controlled automatically by the Pilpxi
driver, and their operation is entirely transparent to the user.

In some applications or for fault diagnostic purposes it may be desirable to
control isolation and loopthru switches independently. There are two ways of
achieving this:

1. In matrix types having auto-isolation and/or auto-loopthru, function
PIL_OpSwitch permits explicit control of individual switches.

2. Cards can usually be reconfigured to allow independent control of isolation
or loopthru switches using the ordinary control functions - if you have such
a requirement please contact support@pickeringtest.com.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

313

Multiprocessing and Multithreading

Multiprocessing involves operation of cards by multiple software processes (i.e.
programs); multithreading uses multiple execution threads within a single
program. Multithreading is a feature of certain programming environments and
can also be managed through the standard Windows API.

Process-safety

The Pilpxi driver is process-safe.

The mechanisms for opening and closing Pickering cards allow a particular card to
be controlled by only one process at any time.

Using the PIL_OpenCards mechanism, a process awaiting the release of cards by
another process can repetetively call PIL_OpenCards: the function will return zero
until control can be obtained. Using the PIL_OpenSpecifiedCard mechanism,
repeated calls to PIL_OpenSpecifiedCard return an error until the card becomes
available.

Multiprocess operation can be investigated by running two copies of the PILMon
terminal monitor program concurrently. If you wish to test the action of the
PIL_OpenSpecifiedCard mechanism, PILMon must be started from the command-
line with the "-n" option specified to prevent it taking control of the cards with
PIL_OpenCards.

Thread-safety

The Pilpxi driver is thread-safe.

Execution of a Pilpxi driver function by one thread simply blocks its execution by
other threads or processes. This includes any settling delay periods, ensuring that
no unwanted overlaps occur in operation.

Functions PIL_OpenCards and PIL_OpenSpecifiedCard

Using the PIL_OpenCards mechanism, a process takes control of all Pickering
cards that are not currently under the control of some other process.
PIL_OpenSpecifiedCard just takes control of the chosen card. Only one of these
mechanisms can be employed at any time; after loading Pilpxi.dll the first use of
one mechanism disables the other. Thus if multiple applications are to access
cards they must all employ the same mechanism for opening and closing them.

Function PIL_SetMode

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

314

The settings made by PIL_SetMode are process-specific, i.e. multiple processes
can operate with different settings. One mode flag used in PIL_SetMode,
MODE_REOPEN, affects cross-process behaviour - see below.

Closing and re-opening cards

Normally when cards are opened using PIL_OpenCards all the cards are cleared.
The reason for this is that there is no facility to read the state of a card's outputs
from the card itself, so that when taking control the software driver has no way of
discovering the pre-existing state of the card.

The Pilpxi driver does however provide a mechanism that allows cards to be re-
opened by PIL_OpenCards with their existing states intact. This permits cards to
be opened and set up by one application, then closed and re-opened by a second
application with their states undisturbed. Note that this facility is not available
when using PIL_OpenSpecifiedCard.

The requirements for this mode of operation are:

1. The application performing the set-up must have called PIL_SetMode with
the bit MODE_REOPEN set prior to releasing the cards with
PIL_CloseCards.

2. The application taking control of the cards must call PIL_SetMode with the
bit MODE_REOPEN set prior to executing PIL_OpenCards.

3. Pilpxi.dll must remain loaded between execution of PIL_CloseCards by the
releasing process and execution of PIL_OpenCards by the process taking
control.

If these requirements are not met, cards will be cleared as normal by
PIL_OpenCards.

The process re-opening the cards can of course be the same one that released
them. The method employed involves disk access so the operation does take a
significant time, which depends to some extent on the number of cards installed.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

315

Simple Programmable Resistor Cards

Applicable to models:

• 40-290
• 40-291
• 40-295
• 40-296
• 50-295

Simple programmable resistor cards employ a series chain of individual fixed
resistors, each having an associated shorting switch. In standard models the fixed
resistor values are arranged in a binary sequence. The discussion below relates to
16-bit models; some considerations may be either more or less significant in
models with higher or lower resolution.

Application considerations: 16-bit models

The binary resistor chain employed in a 16-bit programmable resistor card
provides a notional resolution of about 0.002% (or 15ppm) of the total
resistance.

In exploiting this high resolution there are a number of factors which should be
taken into account:

• The absolute accuracy of the resistors fitted may be only 1% or 0.5% (i.e.
less than 8 bits).

• For 'custom' resistor-chain values, components having the precise nominal
values required may be unobtainable, and the nearest available preferred
values may have to be used.

• The resistors have a non-zero temperature coefficient, typically of
±50ppm/°C, though values down to ±15ppm/°C may be obtainable.

• The closed-contact resistance of the switch shunting each resistor is of the
order of 100 milliohms. In the reed switches employed in these cards this
value is highly stable, provided switches are not subjected to overcurrent.
This includes transient currents, such as may occur if a pre-charged
capacitive circuit is discharged through a low resistance.

• Wiring and connectors impose a small resistance in series with the resistor
chain, of perhaps 200 milliohms.

Some implications of these factors are:

• The relationship between the switch pattern and the programmed
resistance value is not guaranteed to be monotonic (i.e. a change in
switch pattern that might be expected to yield an increase in resistance
value may in fact decrease it, and vice-versa).

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

316

• A resistance value of zero ohms is unobtainable. The lowest value that can
be achieved is composed of the closed-contact resistances of 16 relays in
series, together with wiring and connector resistance. A value of around
1.8 ohms is typical.

• Temperature effects can significantly exceed the notional resolution. For
example, a temperature change of only 5°C may cause a resistance
change of ±250ppm, or 17 times the notional resolution. The resistance of
wiring and closed switch contacts is also affected by temperature.

The cards have the facility to store in non-volatile memory a 16-bit value
associated with each resistor. These values can be used to calibrate the card to
provide greater setting accuracy than the basic absolute accuracy of the resistors
employed in the chain. Usage and interpretation of stored values is entirely user-
specific: the software driver merely provides a mechanism (functions
PIL_WriteCal and PIL_ReadCal) for storing and retrieving them.

A possible scheme for utilising the stored calibration values might be:

• Employ the stored values to somehow represent the deviation of each
resistor's actual value from its nominal value (say, as a percentage:
treated as a signed quantity the 16-bit value might be chosen to represent
a range of ±32.767%).

• Use a calibration procedure to obtain and store an appropriate value for
each individual resistor.

• Software must then make use of the stored calibration data when
programming specific resistance values, taking into account extraneous
circuit resistances. Because of the non-monotonic relationship between
switch pattern and resistance value, some calculation is necessary to
obtain a pattern matching a chosen value. A simple C program
ProgResFind.c demonstrates a possible approach to this.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

317

ProgResFind.c

This program demonstrates a possible algorithm for use in obtaining a specific
resistance value in a 16-bit programmable resistor card, using stored calibration
values for enhanced accuracy.

/* Program: ProgResFind.c */

/* Programmable resistor: find a 16-bit code to give a particular
resistance value */

/* D.C.H 16/8/01 */

/* Overall accuracy is determined by the accuracy of the calibration
values employed */

#include <stdio.h>

/* To output debug info... */

/* *** #define DEBUG */

/* === SEARCH VALUES
== */

/* The resistance value to search for, ohms */

double search_res = 1000.0;

/* The required tolerance (fractional) */

double search_tol = 0.0005; /* = 0.05% */

/* === CALIBRATION VALUES
=== */

/* Offset resistance value, ohms: includes connector and wiring.

 This example includes a 50R offset resistor. */

/* For accuracy, this should ideally be a CALIBRATED value */

double res_offset = 50.2;

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

318

/* The installed resistor values, ohms */

/* For accuracy better than resistor tolerance these must be
CALIBRATED values,

 not NOMINAL ones. */

double res_value[16] =

{

 0.12,

 0.22,

 0.56,

 1.13,

 2.26,

 4.42,

 8.2,

 18.0,

 37.4,

 71.5,

 143.0,

 287.0,

 576.0,

 1130.0,

 2260.0,

 4530.0

};

/* Relay closed-contact resistance, ohms: assumed identical for all
relays */

double res_contact = 0.1;

/*
===
=== */

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

319

/* Prototype */

long find_code(double value, double tolerance);

int main(void)

{

 long code;

 printf("Programmable Resistor Code Finder\n");

 printf("=================================\n");

 printf("D.C.H 16/8/01\n\n");

 printf("Search for %8.2f ohms (+/- %1.3f%%)...\n", search_res,
search_tol * 100);

 code = find_code(search_res, search_tol);

 if (code < 0)

 printf("No code matches this value within the specified
tolerance\n");

 else

 printf("Code 0x%04X\n", code);

 return 0;

}

/* Function: parallel resistor calculation */

double parallel_resistance(double r1, double r2)

{

 return ((r1 * r2) / (r1 + r2));

}

/* Function: find the first code whose actual value matches the
search value

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

320

 within the specified tolerance band.

 Returns the code (0x0000 thru 0xFFFF).

 If no code generates a value that lies within the specified
tolerance band,

 returns -1.

 The method simply searches all codes - some optimisation is
possible. */

long find_code(double value, double tolerance)

{

 long code;

 int bit;

 double res;

 /* Search all codes */

 for (code = 0; code < 0x10000L; code++)

 {

 res = res_offset;

 for (bit = 0; bit < 16; bit++)

 {

 if (code & (1 << bit))

 {

 /* This bit is ON (switch closed) */

 res += parallel_resistance(res_value[bit],
res_contact);

 }

 else

 {

 /* This bit is OFF (switch open) */

 res += res_value[bit];

 }

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

321

 }

 if (res > (value * (1.0 - tolerance)) && res < (value * (1.0
+ tolerance)))

 {

#ifdef DEBUG

 printf("Code 0x%04X = %8.2f ohms\n", code, res);

#endif

 return code;

 }

 }

 return -1;

}

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

322

Segmented Matrix

Segmented Matrix

A segmented matrix is one in which groups of lines on an axis are served by
separate sets of isolation switches on the opposing axis.

Configurations with automated isolation switching

In automated configurations, when operated by functions such as:

• PIL_OpBit
• PIL_WriteSub
• PIL_OpCrosspoint

isolation switching is handled automatically by the driver, and the sub-unit's
internal structure is immaterial to a user; use of PIL_OpSwitch however requires
an understanding of this.

Automated configuration examples:

• 40-725-511: 8 x 9, segmented on both axes
• 40-726-751-LT: 12 x 8, segmented on both axes with loopthru on Y-axis

only
• 40-560-021: 50 x 8 specimen BRIC configuration, segmented on X-axis

(Y-isolation only)

Non-automated configurations

In non-automated configurations isolation switching is controlled independently
from the matrix, using normal driver functions.

Non-automated configuration example:

• 40-560-021-M: 50 x 8 specimen BRIC-M configuration, segmented on X-
axis (Y-isolation only)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

323

Segmented Matrix 40-725-511

40-725-511 is an 8 x 9 matrix, segmented on both axes.

In its standard configuration as a single 8 x 9 matrix sub-unit, when channel
selections are made using functions such as:

• PIL_OpBit
• PIL_WriteSub
• PIL_OpCrosspoint

operation of isolation switches is automated to optimise connections for X - Y
signal routing. PIL_OpSwitch allows access to individual switches for other routing
schemes or fault diagnostic purposes.

Note that an alternate logical configuration treats the card as multiple sub-units,
giving independent access to all switches via the ordinary control functions: for
that configuration PIL_OpSwitch is not applicable.

Attribute values

The relevant values obtained by PIL_SubAttribute when configured for auto-
isolation are:

Attribute code Attribute value

SUB_ATTR_CHANNEL_SUBSWITCHES 1

SUB_ATTR_X_ISO_SUBSWITCHES 1

SUB_ATTR_Y_ISO_SUBSWITCHES 1

SUB_ATTR_NUM_X_SEGMENTS 2

SUB_ATTR_X_SEGMENT01_SIZE 4

SUB_ATTR_X_SEGMENT02_SIZE 4

SUB_ATTR_NUM_Y_SEGMENTS 2

SUB_ATTR_Y_SEGMENT01_SIZE 4

SUB_ATTR_Y_SEGMENT02_SIZE 5

Global crosspoint switch numbers

These numbers correspond to the channel numbers used with PIL_OpBit and are
valid for PIL_OpSwitch when:

• SwitchFunc = SW_FUNC_CHANNEL
• SegNum = 0

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

324

Segment-local crosspoint switch numbers

These switch numbers are valid for PIL_OpSwitch when:

• SwitchFunc = SW_FUNC_CHANNEL
• SegNum = 1 thru 4

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

325

Isolation switch numbers

These switch numbers are valid for PIL_OpSwitch when:

• SwitchFunc = SW_FUNC_X_ISO or SW_FUNC_Y_ISO
• SegNum = 1 or 2

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

326

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

327

Segmented Matrix 40-726-751-LT

Operation of this model's crosspoint and isolation switches by PIL_OpSwitch is
similar to that of 40-725-511, which only differs dimensionally - the size of each
segment in 40-726 being 6 x 4.

In addition, this model incorporates loopthru switches on all lines of its Y-axis.

Note that an alternate logical configuration treats the card as multiple sub-units,
giving independent access to all switches via the ordinary control functions: for
that configuration PIL_OpSwitch is not applicable.

Attribute values

The relevant values obtained by PIL_SubAttribute when configured for auto-
isolation and auto-loopthru are:

Attribute code Attribute value

SUB_ATTR_CHANNEL_SUBSWITCHES 1

SUB_ATTR_X_ISO_SUBSWITCHES 1

SUB_ATTR_Y_ISO_SUBSWITCHES 1

SUB_ATTR_X_LOOPTHRU_SUBSWITCHES 0

SUB_ATTR_Y_LOOPTHRU_SUBSWITCHES 1

SUB_ATTR_NUM_X_SEGMENTS 2

SUB_ATTR_X_SEGMENT01_SIZE 6

SUB_ATTR_X_SEGMENT02_SIZE 6

SUB_ATTR_NUM_Y_SEGMENTS 2

SUB_ATTR_Y_SEGMENT01_SIZE 4

SUB_ATTR_Y_SEGMENT02_SIZE 4

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

328

Segmented Matrix 40-560-021

This documents a specimen 40-560-021 BRIC configuration, as a 50 x 8 matrix
using two 46 x 8 daughtercards; the second daughtercard being partially
populated as 4 x 8. This design is segmented only on the X-axis (each
daughtercard having Y-isolation switches only).

In its standard configuration as a single 50 x 8 matrix sub-unit, when channel
selections are made using functions such as:

• PIL_OpBit
• PIL_WriteSub
• PIL_OpCrosspoint

operation of isolation switches is automated to optimise connections for X - Y
signal routing. PIL_OpSwitch allows access to individual switches for other routing
schemes or fault diagnostic purposes.

Note that an alternate logical configuration is possible, the unit being treated as
multiple sub-units and giving independent access to all switches via the ordinary
control functions: for that configuration PIL_OpSwitch would not be applicable.

In a unit employing a larger number of daughtercards, the number of X-segments
is correspondingly increased.

Attribute values

The relevant values obtained by PIL_SubAttribute when configured for auto-
isolation are:

Attribute code Attribute value

SUB_ATTR_CHANNEL_SUBSWITCHES 1

SUB_ATTR_X_ISO_SUBSWITCHES 0

SUB_ATTR_Y_ISO_SUBSWITCHES 1

SUB_ATTR_NUM_X_SEGMENTS 2

SUB_ATTR_X_SEGMENT01_SIZE 46

SUB_ATTR_X_SEGMENT02_SIZE 4

SUB_ATTR_NUM_Y_SEGMENTS 1

SUB_ATTR_Y_SEGMENT01_SIZE 8

Global crosspoint switch numbers

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

329

These numbers correspond to the channel numbers used with PIL_OpBit and are
valid for PIL_OpSwitch when:

• SwitchFunc = SW_FUNC_CHANNEL
• SegNum = 0

Segment-local crosspoint switch numbers

These switch numbers are valid for PIL_OpSwitch when:

• SwitchFunc = SW_FUNC_CHANNEL
• SegNum = 1 or 2

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

330

Isolation switch numbers

These switch numbers are valid for PIL_OpSwitch when:

• SwitchFunc = SW_FUNC_Y_ISO
• SegNum = 1 or 2

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

331

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

332

Segmented Matrix 40-560-021-M

This documents a specimen 40-560-021-M (BRIC-M) configuration, as a 50 x 8
matrix using two 46 x 8 daughtercards; the second daughtercard being partially
populated as 4 x 8. This design is segmented only on the X-axis (each
daughtercard having Y-isolation switches only).

BRIC-M and similar configurations provide two Y-buses, each of which can be
connected to the switch matrix through its own set of isolation relays. In such
models isolation switching cannot be automated; instead it is operated through
two separate SWITCH sub-units, giving a logical configuration:

Sub-unit Function

1: MATRIX(50X8) The switch matrix

2: SWITCH(16) Y-bus 1 isolation switches

3: SWITCH(16) Y-bus 2 isolation switches

Isolation switch sub-unit channel assignments are:

Channel Isolator for row X-segment

1 Y1 1 (X1 - X46)

2 Y2 1 (X1 - X46)

3 Y3 1 (X1 - X46)

4 Y4 1 (X1 - X46)

5 Y5 1 (X1 - X46)

6 Y6 1 (X1 - X46)

7 Y7 1 (X1 - X46)

8 Y8 1 (X1 - X46)

9 Y1 2 (X47 - X50)

10 Y2 2 (X47 - X50)

11 Y3 2 (X47 - X50)

12 Y3 2 (X47 - X50)

13 Y4 2 (X47 - X50)

14 Y6 2 (X47 - X50)

15 Y7 2 (X47 - X50)

16 Y8 2 (X47 - X50)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

333

In a unit employing a larger number of daughtercards, the number of X-segments
is correspondingly increased; and hence the size of the isolation sub-units.

Attribute values

Significant values obtained by PIL_SubAttribute from sub-unit 1 for this
configuration are:

Attribute code Attribute value

SUB_ATTR_CHANNEL_SUBSWITCHES 1

SUB_ATTR_X_ISO_SUBSWITCHES 0

SUB_ATTR_Y_ISO_SUBSWITCHES 0

SUB_ATTR_NUM_X_SEGMENTS 2

SUB_ATTR_X_SEGMENT01_SIZE 46

SUB_ATTR_X_SEGMENT02_SIZE 4

SUB_ATTR_NUM_Y_SEGMENTS 1

SUB_ATTR_Y_SEGMENT01_SIZE 8

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

334

Unsegmented Matrix

An unsegmented matrix is one in which all lines on an axis are served by a single
set of isolation switches on the opposing axis.

Examples:

• there is currently no real example of this configuration

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

335

Secure Functions

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

336

Visual Basic Secure Functions

Visual Basic Secure Functions

A number of established Pilpxi functions operate insecurely, by accessing
character string or numeric array buffers whose length is unspecified. Equivalent
secure functions now exist, having an additional parameter to specify the size of
the buffer they are being passed.

Insecure
function

Equivalent secure
function

Equivalent VB
native array
function

PIL_CardId PIL_CardId_s None
PIL_Diagnostic PIL_Diagnostic_s None
PIL_ErrorMessage PIL_ErrorMessage_s None
PIL_SubType PIL_SubType_s None
PIL_AttenType PIL_AttenType_s None
PIL_PsuType PIL_PsuType_s None
PIL_ReadSub PIL_ReadSub_s None
PIL_ViewMask PIL_ViewMask_s PIL_ViewMaskArray
PIL_ViewSub PIL_ViewSub_s PIL_ViewSubArray
PIL_WriteMask PIL_WriteMask_s PIL_WriteMaskArray
PIL_WriteSub PIL_WriteSub_s PIL_WriteSubArray

The VB native array functions include automated bounds-checking and their use
may be preferred.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

337

Card ID - secure version (Visual Basic)

Description

Obtains the identification string of the specified card. The string contains these
elements:

<type code>,<serial number>,<revision code>.

The <revision code> value represents the hardware/firmware version of the unit.

Declaration

Declare Function PIL_CardId_s Lib "Pilpxi.dll" (ByVal CardNum As Long, ByVal
Str As String, ByVal StrLen As Long) As Long

Parameters:

CardNum - card number

Str - reference to character string to receive the result

StrLen - the number of characters available in the string referenced by Str

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_CardId. If StrLen is less than
the number of characters needed to hold the result (including the terminating null
character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_ID_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

338

Diagnostic - secure version (Visual Basic)

Description

Obtains the diagnostic string of the specified card, giving expanded information
on any fault conditons indicated by the PIL_Status value.

Declaration

Declare Function PIL_Diagnostic_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal Str As String, ByVal StrLen As Long) As Long

Parameters:

CardNum - card number

Str - reference to character string to receive the result

StrLen - the number of characters available in the string referenced by Str

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_Diagnostic. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The result string may include embedded newline characters, coded as the ASCII
<linefeed> character (&H0A). If the string is to be displayed they should be
expanded to vbCrLf.

The length of the result string will not exceed the value of driver constant
MAX_DIAG_LENGTH.

Warning

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

339

Formatting and content of the diagnostic string may change as enhanced
diagnostic features are made available. It should therefore not be interpreted
programatically.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

340

Error Message - secure version (Visual Basic)

Description

Obtains a string description of the error codes returned by other driver functions.

Declaration

Declare Function PIL_ErrorMessage_s Lib "Pilpxi.dll" (ByVal ErrorCode As Long,
ByVal Str As String, ByVal StrLen As Long) As Long

Parameters:

ErrorCode - the error code to be described

Str - reference to character string to receive the result

StrLen - the number of characters available in the string referenced by Str

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_ErrorMessage. If StrLen is
less than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_ERR_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

341

Sub-unit Type - secure version (Visual Basic)

Description

Obtains a description of a sub-unit, as a text string.

Declaration

Declare Function PIL_SubType_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Out As Boolean, ByVal Str As String, ByVal
StrLen As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

Str - reference to character string to receive the result

StrLen - the number of characters available in the string referenced by Str

Returns:

Zero for success, or non-zero error code.

Type string Description

INPUT(<size>) Digital inputs

SWITCH(<size>) Uncommitted switches

MUX(<size>) Multiplexer, single-channel
only

MUXM(<size>) Multiplexer, multi-channel

MATRIX(<columns>X<rows>) Matrix, LF

MATRIXR(<columns>X<rows>) Matrix, RF

DIGITAL(<size>) Digital Outputs

RES(<number of resistors in chain>) Programmable resistor

ATTEN(<number of pads>) Programmable RF attenuator -
see note

PSUDC(0) DC Power Supply - see note

BATT(<Voltage DAC resolution,
bits>) Battery simulator

VSOURCE(<Voltage DAC resolution,
bits>) Programmable voltage source

MATRIXP(<columns>X<rows>) Matrix with restricted
operating modes

Notes

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

342

This function offers a more secure alternative to PIL_SubType. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

Some sub-unit types are supported by functions providing more detailed
information. These include:

ATTEN - PIL_AttenType_s

PSUDC - PIL_PsuType_s

The length of the result string will not exceed the value of driver constant
MAX_SUB_TYPE_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

343

Attenuator type - secure version (Visual Basic)

Description

Obtains a description of an attenuator sub-unit, as a text string.

Declaration

Declare Function PIL_AttenType_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Str As String, ByVal StrLen As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - reference to character string to receive the result

StrLen - the number of characters available in the string referenced by Str

Returns:

Zero for success, or non-zero error code.

Result

The format of the result is "ATTEN(<number of steps>,<step size in dB>)".

Notes

This function offers a more secure alternative to PIL_AttenType. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_ATTEN_TYPE_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

344

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads employed in the attenuator can be
obtained using PIL_SubType_s.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

345

Power Supply - Type - secure version (Visual Basic)

Description

Obtains a description of a power supply sub-unit, as a text string.

Declaration

Declare Function PIL_PsuType_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal SubNum As Long, ByVal Str As String, ByVal StrLen As Long) As Long

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - reference to character string to receive the result

StrLen - the number of characters available in the string referenced by Str

Returns:

Zero for success, or non-zero error code.

Result

For a DC power supply the format of the result is "PSUDC(<rated
voltage>,<rated current>)".

Notes

This function offers a more secure alternative to PIL_PsuType. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The result is a C-style string, terminated by an ASCII null character. It can be
converted to a Visual Basic string by counting the number of characters upto but
excluding the terminating null, then performing:

VBstring = LEFT$(Str, character_count).

The length of the result string will not exceed the value of driver constant
MAX_PSU_TYPE_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

346

More detailed information on power supply characteristics is obtainable in numeric
format, using PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

347

Read Sub-unit - secure version (Visual Basic)

Description

Obtains the current state of all inputs of a sub-unit.

Declaration

Declare Function PIL_ReadSub_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal InSub As Long, ByRef Data As Long, ByVal DataLen As Long) As Long

Parameters:

CardNum - card number

InSub - input sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

DataLen - the number of elements in the array referenced by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_ReadSub. If DataLen is less
than the number of elements needed to hold the result, no values are copied into
the Data array and the function returns ER_BUFFER_UNDERSIZE.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

PIL_ReadSub_s(CardNum, OutSub, Data, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

PIL_ReadSub_s(CardNum, OutSub, Data(0), DataLen)

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

348

View Mask - secure version (Visual Basic)

Description

Obtains the switch mask of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Declaration

Declare Function PIL_ViewMask_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data As Long, ByVal DataLen As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

DataLen - the number of elements in the array referenced by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_ViewMask. If DataLen is less
than the number of elements needed to hold the result, no values are copied into
the Data array and the function returns ER_BUFFER_UNDERSIZE.

Although this function is usable in Visual Basic, PIL_ViewMaskArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

PIL_ViewMask_s(CardNum, OutSub, Data, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

PIL_ViewMask_s(CardNum, OutSub, Data(0), DataLen)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

349

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

350

View Sub-unit - secure version (Visual Basic)

Description

Obtains the state of all outputs of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Declaration

Declare Function PIL_ViewSub_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data As Long, ByVal DataLen As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) to receive the result

DataLen - the number of elements in the array referenced by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_ViewSub. If DataLen is less
than the number of elements needed to hold the result, no values are copied into
the Data array and the function returns ER_BUFFER_UNDERSIZE.

Although this function is usable in Visual Basic, PIL_ViewSubArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable for the result:

PIL_ViewSub_s(CardNum, OutSub, Data, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

PIL_ViewSub_s(CardNum, OutSub, Data(0), DataLen)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

351

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

352

Write Mask - secure version (Visual Basic)

Description

Sets a sub-unit's switch mask to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written into the
mask. A '1' bit in the mask disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Declaration

Declare Function PIL_WriteMask_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data As Long, ByVal DataLen As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) containing the mask
pattern to be set

DataLen - the number of elements in the array referenced by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_WriteMask. If DataLen is less
than the number of elements needed to represent the target sub-unit, no bits are
copied into the mask and the function returns ER_BUFFER_UNDERSIZE.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

353

Although this function is usable in Visual Basic, PIL_WriteMaskArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

PIL_WriteMask_s(CardNum, OutSub, Data, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

PIL_WriteMask_s(CardNum, OutSub, Data(0), DataLen)

For a Matrix sub-unit, the mask data is folded into the vector on its row-axis: see
Data Formats.

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

354

Write Sub-unit - secure version (Visual Basic)

Description

Sets all outputs of a sub-unit to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written.

Declaration

Declare Function PIL_WriteSub_s Lib "Pilpxi.dll" (ByVal CardNum As Long,
ByVal OutSub As Long, ByRef Data As Long, ByVal DataLen As Long) As Long

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - reference to the one-dimensional array (vector) containing the bit-
pattern to be written

DataLen - the number of elements in the array referenced by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_WriteSub. If DataLen is less
than the number of elements needed to represent the target sub-unit, no bits are
copied to its outputs and the function returns ER_BUFFER_UNDERSIZE.

Although this function is usable in Visual Basic, PIL_WriteSubArray may be
preferred because it uses VB native arrays, providing automated bounds-checking
and other safety features.

For sub-units of 32 bits or less it is acceptable to pass a reference to a simple
variable containing the bit-pattern:

PIL_WriteSub_s(CardNum, OutSub, Data, 1)

For sub-units of more than 32 bits a reference must be passed to the first
element of a data array; for example, assuming a zero-based array:

PIL_WriteSub_s(CardNum, OutSub, Data(0), DataLen)

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

355

For a Matrix sub-unit, the data is folded into the vector on its row-axis: see Data
Formats.

Example Code

For clarity, this example omits initialising the variables CardNum, OutSub etc. and
does no error-checking.

' Dimension a longword data array (index base zero) to contain the

' number of bits necessary to represent the sub-unit (e.g. 2
longwords

' supports sub-units having upto 64 switches)

Dim Data(1) As Long ' Value specifies the highest allowed index

' Data(0) bit 0 represents switch #1

' Data(0) bit 1 represents switch #2

' ... etc.

' Data(0) bit 31 represents switch #32

' Data(1) bit 0 represents switch #33

' ... etc.

' Setup array data to turn on switches 3, 33 and output to the card

Data(0) = &H4 ' set longword 0 bit 2 (switch 3)

Data(1) = &H1 ' set longword 1 bit 0 (switch 33)

Result = PIL_WriteSub_s(CardNum, OutSub, Data(0), 2)

' Add switch 4 to the array and output to the card

Data(0) = (Data(0) Or &H8) ' set longword 0 bit 3 (switch 4)

Result = PIL_WriteSub_s(CardNum, OutSub, Data(0), 2)

' ... now have switches 3, 4, 33 energised

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

356

' Delete switch 33 from the array and output to the card

Data(1) = (Data(1) And &HFFFFFFFE) ' clear longword 1 bit 0 (switch
33)

Result = PIL_WriteSub_s(CardNum, OutSub, Data(0), 2)

' ... leaving switches 3 and 4 energised

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

357

Visual C++ Secure Functions

Visual C++ Secure Functions

A number of established Pilpxi functions operate insecurely, by accessing
character string or numeric array buffers whose length is unspecified. Equivalent
secure functions now exist, having an additional parameter to specify the size of
the buffer they are being passed.

Insecure
function

Equivalent secure
function

Equivalent
SAFEARRAY function

PIL_CardId PIL_CardId_s None
PIL_Diagnostic PIL_Diagnostic_s None
PIL_ErrorMessage PIL_ErrorMessage_s None
PIL_SubType PIL_SubType_s None
PIL_AttenType PIL_AttenType_s None
PIL_PsuType PIL_PsuType_s None
PIL_ReadSub PIL_ReadSub_s None
PIL_ViewMask PIL_ViewMask_s PIL_ViewMaskArray
PIL_ViewSub PIL_ViewSub_s PIL_ViewSubArray
PIL_WriteMask PIL_WriteMask_s PIL_WriteMaskArray
PIL_WriteSub PIL_WriteSub_s PIL_WriteSubArray

The SAFEARRAY functions include automated bounds-checking, but they are a
little more complicated to use than conventional C arrays.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

358

Card ID - secure version (Visual C++)

Description

Obtains the identification string of the specified card. The string contains these
elements:

<type code>,<serial number>,<revision code>.

The <revision code> value represents the hardware/firmware version of the unit.

Prototype

DWORD _stdcall PIL_CardId_s(DWORD CardNum, CHAR *Str, DWORD
StrLen);

Parameters:

CardNum - card number

Str - pointer to character string to receive the result

StrLen - the number of characters available in the string pointed to by Str

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_CardId. If StrLen is less than
the number of characters needed to hold the result (including the terminating null
character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The length of the result string will not exceed the value of driver constant
MAX_ID_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

359

Diagnostic - secure version (Visual C++)

Description

Obtains the diagnostic string of the specified card, giving expanded information
on any fault conditons indicated by the PIL_Status value.

Prototype

DWORD _stdcall PIL_Diagnostic_s(DWORD CardNum, CHAR *Str, DWORD
StrLen);

Parameters:

CardNum - card number

Str - pointer to character string to receive the result

StrLen - the number of characters available in the string pointed to by Str

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_Diagnostic. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The result string may include embedded newline characters, coded as the ASCII
<linefeed> character ('\x0A').

The length of the result string will not exceed the value of driver constant
MAX_DIAG_LENGTH.

Warning

Formatting and content of the diagnostic string may change as enhanced
diagnostic features are made available. It should therefore not be interpreted
programatically.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

360

Error Message - secure version (Visual C++)

Description

Obtains a string description of the error codes returned by other driver functions.

Prototype

DWORD _stdcall PIL_ErrorMessage_s(DWORD ErrorCode, CHAR *Str, DWORD
StrLen);

Parameters:

ErrorCode - the error code to be described

Str - pointer to character string to receive the result

StrLen - the number of characters available in the string pointed to by Str

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_ErrorMessage. If StrLen is
less than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The length of the result string will not exceed the value of driver constant
MAX_ERR_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

361

Sub-unit Type - secure version (Visual C++)

Description

Obtains a description of a sub-unit, as a text string.

Prototype

DWORD _stdcall PIL_SubType_s(DWORD CardNum, DWORD SubNum, BOOL
Out, CHAR *Str, DWORD StrLen);

Parameters:

CardNum - card number

SubNum - sub-unit number

Out - sub-unit function: 0 for INPUT, 1 for OUTPUT

Str - pointer to character string to receive the result

StrLen - the number of characters available in the string pointed to by Str

Returns:

Zero for success, or non-zero error code.

Type string Description

INPUT(<size>) Digital inputs

SWITCH(<size>) Uncommitted switches

MUX(<size>) Multiplexer, single-channel
only

MUXM(<size>) Multiplexer, multi-channel

MATRIX(<columns>X<rows>) Matrix, LF

MATRIXR(<columns>X<rows>) Matrix, RF

DIGITAL(<size>) Digital Outputs

RES(<number of resistors in chain>) Programmable resistor

ATTEN(<number of pads>) Programmable RF attenuator -
see note

PSUDC(0) DC Power Supply - see note

BATT(<Voltage DAC resolution,
bits>) Battery simulator

VSOURCE(<Voltage DAC resolution,
bits>) Programmable voltage source

MATRIXP(<columns>X<rows>) Matrix with restricted
operating modes

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

362

Notes

This function offers a more secure alternative to PIL_SubType. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

Some sub-unit types are supported by functions providing more detailed
information. These include:

ATTEN - PIL_AttenType_s

PSUDC - PIL_PsuType_s

The length of the result string will not exceed the value of driver constant
MAX_SUB_TYPE_STR.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

363

Attenuator type - secure version (Visual C++)

Description

Obtains a description of an attenuator sub-unit, as a text string.

Prototype

DWORD _stdcall PIL_AttenType_s(DWORD CardNum, DWORD SubNum, CHAR
*Str, DWORD StrLen);

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - pointer to character string to receive the result

StrLen - the number of characters available in the string pointed to by Str

Returns:

Zero for success, or non-zero error code.

Result

The format of the result is "ATTEN(<number of steps>,<step size in dB>)".

Notes

This function offers a more secure alternative to PIL_AttenType. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The length of the result string will not exceed the value of driver constant
MAX_ATTEN_TYPE_STR.

The description obtained by this function is a logical one; a physical description
indicating the number of discrete pads employed in the attenuator can be
obtained using PIL_SubType_s.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

364

Power Supply - Type - secure version (Visual C++)

Description

Obtains a description of a power supply sub-unit, as a text string.

Prototype

DWORD _stdcall PIL_PsuType_s(DWORD CardNum, DWORD SubNum, CHAR
*Str, DWORD StrLen);

Parameters:

CardNum - card number

SubNum - sub-unit number

Str - pointer to character string to receive the result

StrLen - the number of characters available in the string pointed to by Str

Returns:

Zero for success, or non-zero error code.

Result

For a DC power supply the format of the result is "PSUDC(<rated
voltage>,<rated current>)".

Notes

This function offers a more secure alternative to PIL_PsuType. If StrLen is less
than the number of characters needed to hold the result (including the
terminating null character), Str is made a null string and the function returns
ER_BUFFER_UNDERSIZE.

The length of the result string will not exceed the value of driver constant
MAX_PSU_TYPE_STR.

More detailed information on power supply characteristics is obtainable in numeric
format, using PIL_PsuInfo.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

365

Read Sub-unit - secure version (Visual C++)

Description

Obtains the current state of all inputs of a sub-unit.

Prototype

DWORD _stdcall PIL_ReadSub_s(DWORD CardNum, DWORD InSub, DWORD
*Data, DWORD DataLen);

Parameters:

CardNum - card number

InSub - input sub-unit number

Data - pointer to variable to receive result

DataLen - the number of elements in the array pointed to by Data

Returns:

Zero for success, or non-zero error code.

Note

This function offers a more secure alternative to PIL_ReadSub. If DataLen is less
than the number of elements needed to hold the result, no values are copied into
the Data array and the function returns ER_BUFFER_UNDERSIZE.

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

366

View Mask - secure version (Visual C++)

Description

Obtains the switch mask of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Prototype

DWORD _stdcall PIL_ViewMask_s(DWORD CardNum, DWORD OutSub,
DWORD *Data, DWORD DataLen);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) to receive the result

DataLen - the number of elements in the array pointed to by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_ViewMask. If DataLen is less
than the number of elements needed to hold the result, no values are copied into
the Data array and the function returns ER_BUFFER_UNDERSIZE.

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

367

View Sub-unit - secure version (Visual C++)

Description

Obtains the state of all outputs of a sub-unit. The result fills the number of least
significant bits corresponding to the size of the sub-unit.

Prototype

DWORD _stdcall PIL_ViewSub_s(DWORD CardNum, DWORD OutSub, DWORD
*Data, DWORD DataLen);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) to receive the result

DataLen - the number of elements in the array pointed to by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_ViewSub. If DataLen is less
than the number of elements needed to hold the result, no values are copied into
the Data array and the function returns ER_BUFFER_UNDERSIZE.

For a Matrix sub-unit, the result is folded into the vector on its row-axis: see Data
Formats.

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

368

Write Mask - secure version (Visual C++)

Description

Sets a sub-unit's switch mask to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written into the
mask. A '1' bit in the mask disables the corresponding switch for functions:

PIL_OpBit

PIL_OpCrosspoint

PIL_WriteSub

PIL_WriteSub_s

PIL_WriteSubArray

This facility is particularly useful for matrix sub-units, where it can be used to
guard against programming errors that could otherwise result in damage to
matrix switches or external circuits.

Prototype

DWORD _stdcall PIL_WriteMask_s(DWORD CardNum, DWORD OutSub,
DWORD *Data, DWORD DataLen);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) containing the mask
pattern to be set

DataLen - the number of elements in the array pointed to by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_WriteMask. If DataLen is less
than the number of elements needed to represent the target sub-unit, no bits are
copied into the mask and the function returns ER_BUFFER_UNDERSIZE.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

369

For a Matrix sub-unit, the mask data is folded into the vector on its row-axis: see
Data Formats.

Certain single-channel multiplexer (MUX type) sub-units have a default channel
(that is, a channel that is connected when the sub-unit is in a 'cleared' state).
This channel cannot be masked, and error ER_ILLEGAL_MASK is given if an
attempt is made to mask it.

Example Code

See the description of PIL_WriteSub_s for example code using a secure array-
based function.

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

370

Write Sub-unit - secure version (Visual C++)

Description

Sets all outputs of a sub-unit to the supplied bit-pattern. The number of least
significant bits corresponding to the size of the sub-unit are written.

Prototype

DWORD _stdcall PIL_WriteSub_s(DWORD CardNum, DWORD OutSub, DWORD
*Data, DWORD DataLen);

Parameters:

CardNum - card number

OutSub - output sub-unit number

Data - pointer to the one-dimensional array (vector) containing the bit-pattern
to be written

DataLen - the number of elements in the array pointed to by Data

Returns:

Zero for success, or non-zero error code.

Notes

This function offers a more secure alternative to PIL_WriteSub. If DataLen is less
than the number of elements needed to represent the target sub-unit, no bits are
copied to its outputs and the function returns ER_BUFFER_UNDERSIZE.

For a Matrix sub-unit, the data is folded into the vector on its row-axis: see Data
Formats.

Example Code

For clarity, this example omits initialising the variables CardNum, OutSub etc. and
does no error-checking.

/* Dimension a DWORD data array to contain the number of bits

 necessary to represent the sub-unit (e.g. 2 longwords

 supports sub-units having upto 64 switches) */

DWORD Data[2]; /* Value specifies the number of array elements */

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

371

/* Data[0] bit 0 represents switch #1

 Data[0] bit 1 represents switch #2

 ... etc.

 Data[0] bit 31 represents switch #32

 Data[1] bit 0 represents switch #33

 ... etc. */

/* Setup array data to turn on switches 3, 33 and output to the card
*/

Data[0] = 0x00000004UL; /* set DWORD 0 bit 2 (switch 3) */

Data[1] = 0x00000001UL; /* set DWORD 1 bit 0 (switch 33) */

Result = PIL_WriteSub_s(CardNum, OutSub, Data, 2);

/* Add switch 4 to the array and output to the card */

Data[0] |= 0x00000008UL; /* set DWORD 0 bit 3 (switch 4) */

Result = PIL_WriteSub_s(CardNum, OutSub, Data, 2);

/* ... now have switches 3, 4, 33 energised */

/* Delete switch 33 from the array and output to the card */

Data[1] &= 0xFFFFFFFEUL; /* clear DWORD 1 bit 0 (switch 33) */

Result = PIL_WriteSub_s(CardNum, OutSub, Data, 2);

/* ... leaving switches 3 and 4 energised */

373

Index

1

16-bit.15, 37, 39, 41, 119, 126, 132,
239, 246, 252, 311, 313

3

32-bit... 5

3U ... 1

4

40-170-101..........................14, 15

40-170-102..........................14, 15

40-26014, 16, 132, 252

40-26114, 18, 132, 252

40-26214, 19, 132, 252

40-265 ... 14, 23, 132, 136, 252, 256

40-280 119, 126, 132, 239, 246, 252

40-281 119, 126, 132, 239, 246, 252

40-282 119, 126, 132, 239, 246, 252

40-290119, 126, 132, 239, 246,
252, 311

40-291119, 126, 132, 239, 246,
252, 311

40-292 132, 252

40-295119, 126, 132, 239, 246,
252, 311

40-296119, 126, 132, 140, 239,
246, 252, 260, 311

40-29714, 25, 132, 252

40-412 14, 28, 30

40-412-001..........................14, 28

40-412-101..........................14, 30

40-41314, 31, 33, 35

40-413-001..........................14, 31

40-413-002..........................14, 33

40-413-003..........................14, 35

40-560-021...................... 318, 324

40-560-021-M 318, 328

40-725-511...............318, 319, 323

40-726-751-LT 318, 323

41-180-021............................... 13

41-180-022............................... 13

41-181-021............................... 13

41-181-022............................... 13

41-182-003............................... 13

41-660-001............................... 13

41-661-001............................... 13

41-720 13

41-735-001.. 13, 119, 126, 239, 246

41-750-001......13, 14, 37, 154, 274

41-751-001......13, 14, 39, 154, 274

41-752-001.....13, 14, 41, 119, 126,
154, 161, 239, 246, 274, 281

41-752-901.................... 13, 14, 41

41-753-001.................... 13, 14, 43

5

50-295119, 126, 132, 239, 246,
252, 311

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

374

50-29714, 45, 132, 252

6

6U ... 1

A

Action8, 9, 82, 93, 94, 102, 104,
161, 206, 214, 215, 223, 225,
281, 298, 306, 309

Application notes 132, 252, 303

Architecture 2

Attenuation 9, 50, 141, 142, 144,
145, 174, 261, 262, 264, 265

Attenuator 3, 50, 71, 75, 78, 141,
143, 144, 145, 146, 174, 195,
199, 202, 261, 263, 264, 265,
266, 337, 339, 357, 359

Auto-isolation 94, 98, 215, 219, 308,
319, 323, 324

Auto-loopthru 94, 98, 215, 219, 308,
323

B

Bank number 3

BATT..3, 41, 75, 154, 155, 156, 157,
158, 159, 160, 161, 199, 274,
275, 276, 277, 278, 279, 280,
281, 337, 357

BATT_ALL_BATT_SUB_UNITS155,
157, 159, 160, 161, 275, 277,
279, 280, 281

Battery Simulator.. 3, 14, 37, 39, 41,
43, 50, 71, 75, 154, 155, 156,
157, 158, 159, 160, 161, 174,
195, 199, 274, 275, 276, 277,
278, 279, 280, 281, 337, 357

BBM..306

BitNum.. 82, 83, 102, 109, 116, 206,
207, 223, 229, 236

BOOL. 195, 199, 206, 207, 214, 215,
218, 219, 223, 225, 229, 230,
236, 268, 281, 357

Boolean .. 71, 75, 82, 83, 93, 94, 97,
98, 102, 104, 109, 110, 116, 148,
161, 337

Borland..............................48, 293

Break-before-make................8, 306

BRIC . 171, 291, 303, 304, 305, 318,
324

BRIC-M............................ 318, 328

Bus ... 58, 59, 61, 67, 182, 183, 185,
191

C

CAL_STORE_FACTORY121, 123, 128,
130, 241, 243, 248, 250

CAL_STORE_USER.....121, 123, 128,
130, 241, 243, 248, 250

Calibration 9, 15, 16, 18, 19, 23, 25,
37, 39, 41, 43, 45, 50, 69, 73,
118, 119, 121, 123, 125, 126,
128, 130, 132, 136, 140, 147,
174, 193, 197, 238, 239, 241,
243, 245, 246, 248, 250, 252,
256, 260, 267, 298, 311, 313

CF.. 298

CHAR. 184, 188, 190, 199, 266, 273,
354, 355, 356, 357, 359, 360

Clear ...8, 50, 58, 78, 79, 80, 81, 82,
87, 90, 94, 100, 101, 102, 111,
113, 132, 140, 147, 171, 174,
182, 202, 203, 204, 205, 206,
210, 215, 221, 222, 223, 231,
233, 252, 260, 267, 291, 298,
304, 305, 306, 309, 348, 350,
364, 366

Close2, 3, 50, 54, 55, 56, 57, 62, 78,
92, 94, 164, 174, 178, 179, 180,
181, 186, 202, 213, 215, 284,
298, 304, 305, 309, 311, 313

Index

375

Closure limit 9, 50, 59, 62, 174, 183,
186, 298, 305

Column .3, 5, 9, 71, 93, 97, 98, 104,
110, 195, 214, 218, 219, 225, 230

CompactPCI 1

Contact ... 12, 15, 94, 215, 302, 304,
306, 308, 311

Co-ordinates 5, 82, 93, 97, 102, 104,
110, 206, 214, 218, 223, 225, 230

Crosspoint .. 3, 5, 50, 92, 93, 94, 97,
98, 100, 104, 110, 174, 213, 214,
215, 218, 219, 221, 225, 230,
298, 304, 319, 323, 324

Cross-referenced 61, 185

Current Sensing......................... 14

D

Daughtercard 171, 291, 304, 324,
328

Debounce 8, 68, 192

Definitions 69, 73, 136, 150, 171,
193, 197, 256, 270, 291

Delay loading173

Diagnostic. 1, 50, 59, 64, 69, 73, 94,
174, 183, 188, 193, 197, 215,
296, 298, 302, 308, 319, 324,
334, 355

Diagnostic utility 296, 302

Digital ...1, 3, 14, 15, 16, 19, 28, 30,
31, 33, 35, 37, 39, 71, 75, 92,
195, 199, 213, 306, 337, 357

Direct.........................1, 2, 41, 302

DLL............... 49, 54, 173, 178, 293

Dynamic 2

E

EEPROM.... 9, 69, 73, 119, 121, 123,
126, 128, 130, 140, 193, 197,
239, 241, 243, 246, 248, 250, 260

Enumerate9, 65, 189, 193, 195, 197,
256, 263, 270, 291

ER_ATTR_UNSUPPORTED9

ER_BAD_ACTION..........................9

ER_BAD_ARRAY9

ER_BAD_ATTEN9

ER_BAD_ATTR_CODE....................9

ER_BAD_BIT................................9

ER_BAD_CAL_INDEX9

ER_BAD_COLUMN9

ER_BAD_CURRENT9

ER_BAD_FP_FORMAT....................9

ER_BAD_FUNC_CODE9

ER_BAD_LOCATION......................9

ER_BAD_MODE9

ER_BAD_POLE9

ER_BAD_POT...............................9

ER_BAD_RANGE...........................9

ER_BAD_REGISTER9

ER_BAD_RESISTANCE.... 9, 138, 258

ER_BAD_ROW..............................9

ER_BAD_SEGMENT.......................9

ER_BAD_STORE9

ER_BAD_SUB...............................9

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

376

ER_BAD_SUBSWITCH................... 9

ER_BAD_VOLTAGE 9

ER_BUFFER_UNDERSIZE9, 333, 334,
336, 337, 339, 341, 343, 344,
346, 348, 350, 354, 355, 356,
357, 359, 360, 361, 362, 363,
364, 366

ER_CARD_DISABLED.................... 9

ER_CARD_INACCESSIBLE 9

ER_CARD_TYPE 9

ER_DRIVER_OP 9

ER_DRIVER_VERSION 9

ER_EEPROM_WRITE_TMO 9

ER_EXCESS_CLOSURE.................. 9

ER_EXECUTION_FAIL9, 159, 279

ER_HARDWARE_FAULT 9

ER_ILLEGAL_MASK 9, 102, 111, 113,
223, 231, 233, 348, 364

ER_ILLEGAL_OP........................... 9

ER_MATRIXP_ILLEGAL 9

ER_MATRIXR_ILLEGAL.................. 9

ER_MISSING_CAPABILITY 9

ER_MISSING_CHANNEL 9

ER_MISSING_HARDWARE 9

ER_MUX_ILLEGAL 9

ER_NO_CAL_DATA 9

ER_NO_CARD.............................. 9

ER_NO_INFO............................... 9

ER_OUTPUT_MASKED.....9, 100, 221

ER_READ_FAIL9

ER_SETTINGS_CONFLICT9

ER_STATE_CORRUPT 9, 94, 215

ER_SUB_TYPE..............................9

ER_UNCALIBRATED9

ER_WRITE_FAIL9

Explicit linking 173

F

Factory calibration.....121, 123, 128,
130, 241, 243, 248, 250

FAR...................209, 212, 228, 233

Firmware60, 184

Fuse 304, 305

G

Global behaviour 171, 291

H

Hardware 3, 9, 60, 69, 73, 154, 159,
161, 184, 193, 197, 274, 279,
281, 306

HE ... 298

Help1, 9, 293, 298

I

I/O.............................. 1, 2, 3, 302

ID 60, 184, 298, 333, 354

Identification ...50, 59, 60, 174, 183,
184, 298, 333, 354

Implicit linking 173

Indirected2

Initialise......... 50, 54, 174, 178, 298

Index

377

Input3, 5, 14, 15, 28, 30, 31, 33, 35,
37, 39, 41, 43, 50, 59, 65, 71, 75,
115, 116, 117, 174, 183, 189,
195, 199, 235, 236, 237, 298,
301, 337, 343, 357, 361

Input-Output...1, 14, 28, 30, 31, 33,
35, 154, 274

Instrument..1, 2, 177, 294, 295, 302

InSub..116, 117, 236, 237, 343, 361

Isolation94, 215, 303, 304, 306,
308, 318, 319, 323, 324, 328, 330

L

LabVIEW..................... 48, 295, 302

LabWindows/CVI.......... 48, 294, 302

LF3, 71, 75, 195, 199, 298, 337, 357

Library2, 294, 295

Link2, 173, 293

Longword.................. 5, 87, 90, 350

Loopthru.......94, 215, 308, 318, 323

LPSAFEARRAY..... 209, 212, 228, 233

LS...298

M

Masking.....100, 102, 104, 221, 223,
225

Matrix3, 5, 9, 50, 62, 71, 75, 78, 82,
84, 86, 87, 90, 92, 93, 94, 97, 98,
100, 102, 104, 106, 108, 110,
111, 113, 174, 186, 195, 199,
202, 206, 208, 209, 210, 212,
213, 214, 215, 218, 219, 221,
223, 225, 227, 228, 230, 231,
233, 298, 304, 305, 308, 318,
319, 324, 328, 337, 344, 346,
348, 350, 357, 362, 363, 364, 366

MATRIXP .3, 9, 75, 94, 98, 199, 215,
219, 337, 357

MATRIXP_NOT_APPLICABLE..98, 219

MATRIXP_RESTRICTIVE_X....98, 219

MATRIXP_RESTRICTIVE_Y98, 219

MATRIXR...... 3, 9, 75, 199, 337, 357

MAX_ATTEN_TYPE_STR..... 146, 266,
339, 359

MAX_DIAG_LENGTH64, 188, 334,
355

MAX_ERR_STR..... 66, 190, 336, 356

MAX_ID_STR 60, 184, 333, 354

MAX_PSU_TYPE_STR .153, 273, 341,
360

MAX_SUB_TYPE_STR ...75, 199, 337,
357

Mode3, 8, 9, 50, 68, 71, 73, 75, 138,
150, 161, 170, 171, 174, 192,
195, 197, 199, 258, 270, 281,
290, 291, 298, 304, 308, 309,
337, 357

MODE_DEFAULT................ 171, 291

MODE_IGNORE_TEST .171, 291, 304

MODE_NO_WAIT... 8, 140, 171, 260,
291, 306

MODE_REOPEN171, 291, 309

MODE_UNLIMITED......171, 291, 305

ModeFlags........................ 171, 291

Multiplexer 3, 16, 18, 19, 23, 37, 39,
43, 62, 71, 75, 82, 92, 102, 111,
113, 163, 186, 195, 199, 206,
213, 223, 231, 233, 283, 306,
337, 348, 357, 364

Multiprocessing 303, 309

Multithreading................... 303, 309

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

378

MUX 3, 9, 15, 16, 18, 19, 23, 28, 31,
33, 35, 37, 39, 43, 62, 75, 82,
102, 111, 113, 186, 199, 206,
223, 231, 233, 306, 337, 348,
357, 364

MUXM 3, 75, 199, 337, 357

N

National Instruments.................302

NO_ERR 9

Non-volatile 37, 39, 43, 118, 132,
140, 147, 238, 252, 260, 267, 311

O

OFF....5, 83, 97, 100, 159, 160, 168,
169, 207, 218, 221, 279, 280,
288, 289, 313

ON.....5, 83, 97, 100, 132, 159, 160,
168, 169, 207, 218, 221, 252,
279, 280, 288, 289, 305, 313

One-dimensional... 5, 67, 84, 86, 87,
90, 106, 108, 111, 113, 117, 191,
208, 209, 210, 212, 227, 228,
231, 233, 343, 344, 346, 348,
350, 362, 363, 364, 366

Open. 2, 3, 9, 50, 54, 55, 56, 57, 58,
63, 78, 79, 92, 94, 132, 174, 178,
179, 180, 181, 182, 187, 202,
203, 213, 215, 252, 298, 302,
304, 309, 313

OUTPUT. 3, 65, 71, 75, 98, 189, 195,
199, 219, 337, 357

Overheating ..62, 171, 186, 291, 305

P

Pad 50, 75, 141, 143, 144, 145, 146,
174, 199, 261, 263, 264, 265,
266, 337, 339, 357, 359

Panels 294, 296, 297, 302

Parity69, 73, 193, 197

PATH.......................... 49, 173, 293

PCI......................... 1, 61, 185, 302

pi40iv ...2

Pickering Interfaces 1, 12

PIL_AttenGetAttenuation50, 141,
142, 174, 261, 262

PIL_AttenInfo 50, 71, 141, 143, 174,
195, 261, 263

PIL_AttenPadValue50, 141, 144,
145, 174, 261, 264, 265

PIL_AttenSetAttenuation50, 141,
144, 145, 174, 261, 264, 265

PIL_AttenType50, 75, 141, 146, 174,
199, 261, 266, 332, 339, 353, 359

PIL_AttenType_s . 50, 146, 174, 266,
332, 337, 339, 353, 357, 359

PIL_BattGetCurrent 41, 50, 154, 157,
158, 174, 274, 277, 278

PIL_BattGetEnable. 41, 50, 154, 159,
160, 174, 274, 279, 280

PIL_BattGetVoltage 41, 50, 154, 155,
156, 174, 274, 275, 276

PIL_BattReadInterlockState ...41, 50,
154, 161, 174, 274, 281

PIL_BattSetCurrent 41, 50, 154, 157,
158, 174, 274, 277, 278

PIL_BattSetEnable. 41, 50, 154, 159,
161, 174, 274, 279, 281

PIL_BattSetVoltage 41, 50, 154, 155,
156, 174, 274, 275, 276

PIL_CardId .. 3, 50, 59, 60, 174, 183,
184, 298, 332, 333, 353, 354

PIL_CardId_s. 50, 60, 174, 184, 332,
333, 353, 354

PIL_CardLoc 3, 50, 59, 61, 174, 183,
185, 298

Index

379

PIL_ClearAll50, 78, 79, 94, 174, 202,
203, 215, 298

PIL_ClearCard ...50, 78, 80, 94, 174,
202, 204, 215, 298

PIL_ClearMask28, 30, 31, 33, 35, 50,
100, 101, 174, 221, 222, 298

PIL_ClearSub 16, 18, 19, 23, 25, 28,
30, 31, 33, 35, 37, 39, 41, 43, 45,
50, 78, 81, 94, 138, 147, 163,
174, 202, 205, 215, 258, 267,
283, 298

PIL_CloseCards..50, 54, 55, 57, 174,
178, 179, 181, 298, 309

PIL_CloseSpecifiedCard... 50, 54, 56,
174, 178, 180, 298

PIL_ClosureLimit 50, 59, 62, 174,
183, 186, 298, 305

PIL_CountFreeCards .. 50, 54, 59, 63,
67, 174, 178, 183, 187, 191, 298

PIL_Diagnostic.....50, 59, 64, 69, 73,
174, 183, 188, 193, 197, 298,
332, 334, 353, 355

PIL_Diagnostic_s ...50, 64, 174, 188,
332, 334, 353, 355

PIL_EnumerateSubs .. 3, 50, 65, 174,
189, 298

PIL_ErrorMessage 9, 50, 59, 66, 174,
183, 190, 332, 336, 353, 356

PIL_ErrorMessage_s50, 66, 174,
190, 332, 336, 353, 356

PIL_FindFreeCards 50, 54, 58, 59,
67, 174, 178, 182, 183, 191, 298

PIL_MaskBit .. 28, 30, 31, 33, 35, 50,
100, 102, 104, 174, 221, 223,
225, 298

PIL_MaskCrosspoint .. 5, 50, 93, 100,
102, 104, 174, 214, 221, 223,
225, 298

PIL_OpBit.. 5, 16, 18, 19, 23, 28, 30,
31, 33, 35, 37, 39, 41, 43, 50, 78,
82, 93, 94, 100, 101, 102, 104,
111, 113, 132, 144, 145, 163,
174, 202, 206, 214, 215, 221,
222, 223, 225, 231, 233, 252,
264, 265, 283, 298, 318, 319,
324, 348, 364

PIL_OpCrosspoint .. 5, 50, 82, 92, 93,
100, 101, 102, 104, 111, 113,
174, 206, 213, 214, 221, 222,
223, 225, 231, 233, 298, 318,
319, 324, 348, 364

PIL_OpenCards 3, 50, 54, 55, 57,
174, 178, 179, 181, 298, 309

PIL_OpenSpecifiedCard 3, 50, 54, 56,
58, 67, 174, 178, 180, 182, 191,
298, 309

PIL_OpSwitch50, 92, 94, 98, 174,
213, 215, 219, 308, 318, 319,
323, 324

PIL_PsuEnable 50, 147, 148, 150,
174, 267, 268, 270

PIL_PsuGetVoltage50, 147, 149,
152, 174, 267, 269, 272

PIL_PsuInfo ... 50, 71, 147, 148, 150,
152, 153, 174, 195, 267, 268,
270, 272, 273, 341, 360

PIL_PsuSetVoltage50, 147, 150, 152,
174, 267, 270, 272

PIL_PsuType.. 50, 75, 147, 153, 174,
199, 267, 273, 332, 341, 353, 360

PIL_PsuType_s.... 50, 153, 174, 273,
332, 337, 341, 353, 357, 360

PIL_ReadBit. 37, 39, 41, 43, 50, 115,
116, 174, 235, 236, 298

PIL_ReadCal .. 41, 50, 118, 119, 126,
132, 140, 147, 174, 238, 239,
246, 252, 260, 267, 298, 311

PIL_ReadCalDate. 16, 18, 19, 23, 25,
45, 50, 118, 121, 128, 132, 174,
238, 241, 248, 252

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

380

PIL_ReadCalFP16, 18, 19, 23, 25,
45, 50, 118, 123, 125, 130, 174,
238, 243, 245, 250

PIL_ReadSub...5, 28, 30, 31, 33, 35,
37, 39, 41, 43, 50, 115, 117, 174,
235, 237, 298, 332, 343, 353, 361

PIL_ReadSub_s....50, 117, 174, 237,
332, 343, 353, 361

PIL_ResGetResistance16, 18, 19, 23,
25, 45, 50, 132, 135, 138, 174,
252, 255, 258

PIL_ResInfo .. 16, 18, 19, 23, 25, 45,
50, 132, 135, 136, 138, 174, 252,
255, 256, 258

PIL_ResSetResistance 16, 18, 19, 23,
25, 45, 50, 123, 125, 128, 130,
132, 135, 136, 138, 174, 243,
245, 248, 250, 252, 255, 256, 258

PIL_SetCalPoint ...16, 18, 19, 23, 25,
45, 50, 118, 125, 174, 238, 245

PIL_SetMode8, 50, 62, 68, 170, 171,
174, 186, 192, 290, 291, 298,
304, 305, 306, 309

PIL_SettleTime8, 50, 59, 68, 174,
183, 192, 298

PIL_Status8, 50, 59, 64, 69, 73,
121, 174, 183, 188, 193, 197,
241, 298, 304, 306, 334, 355

PIL_SubAttribute .. 3, 50, 92, 94, 98,
174, 213, 215, 219, 319, 323,
324, 328

PIL_SubInfo 3, 50, 59, 71, 143, 144,
174, 183, 195, 263, 264, 298

PIL_SubStatus.8, 50, 59, 69, 73, 94,
121, 147, 174, 183, 193, 197,
215, 241, 267

PIL_SubType3, 50, 59, 75, 146, 174,
183, 199, 266, 298, 332, 337,
353, 357

PIL_SubType_s......50, 75, 174, 199,
332, 337, 339, 353, 357, 359

PIL_Version50, 59, 77, 174, 183,
201, 298

PIL_ViewBit ...23, 28, 30, 31, 33, 35,
37, 39, 41, 43, 50, 78, 83, 94, 97,
132, 174, 202, 207, 215, 218,
252, 298

PIL_ViewCrosspoint5, 50, 92, 93, 97,
174, 213, 214, 218, 298

PIL_ViewMask..5, 28, 30, 31, 33, 35,
50, 100, 106, 174, 221, 227, 228,
298, 332, 344, 353, 362

PIL_ViewMask_s.. 50, 100, 106, 174,
221, 227, 332, 344, 353, 362

PIL_ViewMaskArray .5, 50, 100, 106,
108, 174, 221, 228, 298, 332,
344, 353

PIL_ViewMaskBit . 28, 30, 31, 33, 35,
50, 100, 109, 110, 174, 221, 229,
230, 298

PIL_ViewMaskCrosspoint ...5, 50, 93,
100, 110, 174, 214, 221, 230, 298

PIL_ViewSub ...5, 16, 18, 19, 23, 25,
28, 30, 31, 33, 35, 37, 39, 41, 43,
45, 50, 78, 84, 132, 174, 202,
208, 209, 252, 283, 298, 332,
346, 353, 363

PIL_ViewSub_s 50, 84, 174, 208,
332, 346, 353, 363

PIL_ViewSubArray . 5, 50, 78, 84, 86,
132, 163, 174, 202, 209, 298,
332, 346, 353

PIL_VsourceGetEnable .50, 163, 168,
169, 174, 283, 288, 289

PIL_VsourceGetRange..50, 163, 164,
165, 174, 283, 284, 285

PIL_VsourceGetVoltage 50, 163, 166,
167, 174, 283, 286, 287

PIL_VsourceSetEnable..50, 163, 168,
169, 174, 283, 288, 289

Index

381

PIL_VsourceSetRange.. 50, 163, 164,
165, 174, 283, 284, 285

PIL_VsourceSetVoltage 50, 163, 166,
167, 174, 283, 286, 287

PIL_WriteCal . 41, 50, 118, 119, 126,
132, 140, 147, 174, 238, 239,
246, 252, 260, 267, 298, 311

PIL_WriteCalDate.16, 18, 19, 23, 25,
45, 50, 118, 121, 128, 174, 238,
241, 248

PIL_WriteCalFP16, 18, 19, 23, 25,
45, 50, 118, 123, 125, 130, 174,
238, 243, 245, 250

PIL_WriteMask.5, 28, 30, 31, 33, 35,
50, 100, 111, 174, 221, 231, 233,
298, 332, 348, 353, 364

PIL_WriteMask_s .50, 100, 111, 174,
221, 231, 332, 348, 353, 364

PIL_WriteMaskArray 5, 50, 100, 111,
113, 174, 221, 233, 298, 332,
348, 353

PIL_WriteSub5, 8, 16, 18, 19, 23,
25, 28, 30, 31, 33, 35, 37, 39, 41,
43, 45, 50, 78, 84, 87, 100, 101,
102, 104, 106, 111, 113, 117,
132, 140, 174, 202, 208, 210,
212, 215, 221, 222, 223, 225,
227, 231, 233, 237, 252, 260,
261, 264, 265, 298, 301, 318,
319, 324, 332, 348, 350, 353,
364, 366

PIL_WriteSub_s50, 87, 100, 101,
102, 104, 111, 113, 174, 210,
221, 222, 223, 225, 231, 233,
332, 343, 344, 346, 348, 350,
353, 361, 362, 363, 364, 366

PIL_WriteSubArray 5, 50, 78, 86, 87,
90, 94, 100, 101, 102, 104, 108,
111, 113, 132, 140, 141, 144,
145, 174, 202, 212, 221, 222,
223, 225, 231, 233, 260, 298,
301, 332, 348, 350, 353, 364

PILDemo.......................... 177, 301

PILDEMO.C....................... 177, 293

PILMon 298, 309

PILPXI.BAS....9, 49, 69, 71, 73, 136,
143, 150, 171, 256

PILPXI.H 9, 173, 193, 195, 197, 263,
270, 291, 293

PILPXI.LIB...................49, 173, 293

pipx40 2, 294, 295, 302

PipxDiag 302

Potentiometer 140, 260

Power supply3, 71, 73, 75, 147, 148,
149, 150, 152, 153, 195, 197,
199, 267, 268, 269, 270, 272,
273, 304, 306, 337, 341, 357, 360

Processor speed 306

Programmable Potentiometer 140,
260

Programmable Resistor 3, 50, 71, 75,
119, 126, 132, 135, 136, 138,
140, 174, 195, 199, 239, 246,
252, 255, 256, 258, 260, 303,
311, 313, 337, 357

PSU_CAP_CURRENT_MODE_SENSE
.................................... 150, 270

PSU_CAP_OUTPUT_CONTROL.... 148,
150, 268, 270

PSU_CAP_OUTPUT_SENSE.. 150, 270

PSU_CAP_PROG_CURRENT . 150, 270

PSU_CAP_PROG_VOLTAGE 150, 152,
270, 272

PXI......................... 1, 37, 298, 302

R

Read 9, 15, 37, 39, 43, 50, 116, 117,
119, 121, 123, 161, 171, 174,

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

382

236, 237, 239, 241, 243, 281,
291, 298, 301, 309, 343, 361

Relay .1, 15, 94, 215, 304, 305, 306,
311, 313, 328

RES_MODE_SET 138, 258

Revision code60, 184, 333, 354

RF .3, 50, 71, 75, 78, 141, 143, 174,
195, 199, 202, 261, 263, 308,
337, 357

Row3, 5, 9, 71, 93, 97, 98, 104,
110, 195, 214, 218, 219, 225,
230, 328

S

SafeArray 209, 212, 228, 233

Sample.. 28, 30, 31, 33, 35, 53, 177,
293

Segment....9, 94, 98, 215, 219, 303,
318, 319, 323, 324, 328

Segmented matrix .94, 98, 215, 219,
303, 318, 319, 323, 324, 328

Segment-local94, 215, 319, 324

Serial number..................... 60, 184

Settling time ... 50, 59, 68, 171, 174,
183, 192, 291, 298, 306

Slot3, 58, 59, 61, 67, 182, 183, 185,
191

STAT_BUSY.8, 69, 73, 193, 197, 306

STAT_CALIBRATION_DUE69, 73,
121, 193, 197, 241

STAT_CARD_INACCESSIBLE ..69, 73,
193, 197

STAT_CORRUPTED ..73, 94, 197, 215

STAT_DISABLED....69, 73, 193, 197,
304

STAT_EEPROM_ERR 69, 73, 193, 197

STAT_HW_FAULT .. 69, 73, 193, 197,
304

STAT_NO_CARD..... 69, 73, 193, 197

STAT_NO_SUB....................73, 197

STAT_OK 69, 73, 193, 197

STAT_PARITY_ERROR ... 69, 73, 193,
197

STAT_PSU_CURRENT_LIMIT .73, 197

STAT_PSU_INHIBITED73, 197

STAT_PSU_SHUTDOWN........73, 197

STAT_UNCALIBRATED... 69, 73, 193,
197

STAT_WRONG_DRIVER . 69, 73, 193,
197

Status ...39, 43, 50, 59, 69, 73, 147,
174, 183, 193, 197, 267, 298

Str 60, 64, 66, 75, 146, 153, 184,
188, 190, 199, 266, 273, 333,
334, 336, 337, 339, 341, 354,
355, 356, 357, 359, 360

Sub .. 55

SUB_ATTR_CHANNEL_SUBSWITCHE
S....... 98, 219, 319, 323, 324, 328

SUB_ATTR_MATRIXP_TOPOLOGY.98,
219

SUB_ATTR_NUM_X_SEGMENTS... 98,
219, 319, 323, 324, 328

SUB_ATTR_NUM_Y_SEGMENTS ... 98,
219, 319, 323, 324, 328

SUB_ATTR_X_ISO_SUBSWITCHES
......... 98, 219, 319, 323, 324, 328

SUB_ATTR_X_SEGMENT01_SIZE .98,
219, 319, 323, 324, 328

Index

383

SUB_ATTR_X_SEGMENT02_SIZE. 98,
219, 319, 323, 324, 328

SUB_ATTR_X_SEGMENT03_SIZE. 98,
219

SUB_ATTR_X_SEGMENT04_SIZE. 98,
219

SUB_ATTR_X_SEGMENT05_SIZE. 98,
219

SUB_ATTR_X_SEGMENT06_SIZE. 98,
219

SUB_ATTR_X_SEGMENT07_SIZE. 98,
219

SUB_ATTR_X_SEGMENT08_SIZE. 98,
219

SUB_ATTR_X_SEGMENT09_SIZE. 98,
219

SUB_ATTR_X_SEGMENT10_SIZE. 98,
219

SUB_ATTR_X_SEGMENT11_SIZE. 98,
219

SUB_ATTR_X_SEGMENT12_SIZE. 98,
219

SUB_ATTR_Y_ISO_SUBSWITCHES
........ 98, 219, 319, 323, 324, 328

SUB_ATTR_Y_SEGMENT01_SIZE. 98,
219, 319, 323, 324, 328

SUB_ATTR_Y_SEGMENT02_SIZE. 98,
219, 319, 323

SubNum71, 73, 75, 98, 136, 142,
143, 144, 145, 146, 148, 149,
150, 152, 153, 155, 156, 157,
158, 159, 160, 161, 164, 165,
166, 167, 168, 169, 195, 197,
199, 219, 256, 262, 263, 264,
265, 266, 268, 269, 270, 272,
273, 275, 276, 277, 278, 279,
280, 281, 284, 285, 286, 287,
288, 289, 337, 339, 341, 357,
359, 360

Subswitch 9, 94, 215

SW_ACT_CLOSE..................94, 215

SW_ACT_NONE...................94, 215

SW_ACT_OPEN94, 215

SW_FUNC_CHANNEL....94, 215, 319,
324

SW_FUNC_X_BIFURCATION..94, 215

SW_FUNC_X_ISO.........94, 215, 319

SW_FUNC_X_LOOPTHRU94, 215

SW_FUNC_Y_BIFURCATION ..94, 215

SW_FUNC_Y_ISO . 94, 215, 319, 324

SW_FUNC_Y_LOOPTHRU94, 215

Switch mask......101, 106, 108, 111,
113, 222, 227, 228, 231, 233,
344, 348, 362, 364

System 40...................................1

System 41............................. 1, 13

System 45...................................1

System 50...................................1

T

Terminal monitor.296, 298, 302, 309

Test panels................296, 297, 302

Thermocouple Simulator 14, 50, 163,
174, 283

Type code ... 71, 143, 150, 195, 263,
270

TYPE_ATTEN.....3, 71, 143, 195, 263

TYPE_BATT..................... 3, 71, 195

TYPE_DIG 3, 71, 195

TYPE_MAT...................... 3, 71, 195

Pickering Interfaces PXI Direct I/O Driver - Pilpxi

384

TYPE_MATP 3, 71, 195

TYPE_MATR.................... 3, 71, 195

TYPE_MUX 3, 71, 195

TYPE_MUXM................... 3, 71, 195

TYPE_PSUDC.... 3, 71, 150, 195, 270

TYPE_RES 3, 71, 195

TYPE_SW....................... 3, 71, 195

TYPE_VSOURCE 3, 71, 195

TypeNum.....71, 143, 150, 195, 263,
270

U

Ucomm32.DLL..........................298

Unsegmented matrix94, 98, 215,
219, 303, 330

User calibration . 121, 123, 128, 130,
241, 243, 248, 250

V

vbCrLf 64, 334

VBDEMO.FRM 53

VBDEMO.VBP............................. 53

Version . 1, 9, 13, 50, 59, 60, 64, 66,
75, 77, 84, 87, 106, 111, 117,
146, 153, 173, 174, 183, 184,
188, 190, 199, 201, 208, 210,
227, 231, 237, 266, 273, 293,
298, 302, 333, 334, 336, 337,
339, 341, 343, 344, 346, 348,
350, 354, 355, 356, 357, 359,
360, 361, 362, 363, 364, 366

View.. 83, 84, 86, 97, 106, 108, 109,
110, 207, 208, 209, 218, 227,
228, 229, 230, 344, 346, 362, 363

VISA..................... 2, 294, 295, 302

Visual Basic .NET........................ 49

Voltage Source...3, 71, 75, 164, 165,
166, 167, 168, 169, 195, 199,
284, 285, 286, 287, 288, 289,
337, 357

VSOURCE.3, 75, 163, 164, 165, 166,
167, 168, 169, 199, 283, 284,
285, 286, 287, 288, 289, 337, 357

VSOURCE_ALL_VSOURCE_SUB_UNIT
S....................168, 169, 288, 289

W

Windows49, 173, 293, 298, 302, 309

Write . 9, 37, 39, 43, 50, 87, 90, 111,
113, 126, 128, 130, 174, 210,
212, 231, 233, 246, 248, 250,
298, 348, 350, 364, 366

Pickering Interfaces PXI

Register-level Programming Manual

Version date: 31 May 2011

Purpose

This manual describes the general principles of register-level operation of Pickering Interfaces
PXI Switching cards in the System 40, System 45 and System 50 (PCI) ranges. It is also
applicable to certain models in the System 41 PXI Instrument range.

Supplementary Information

For information on PCIbus operation, and its CompactPCI and PXI implementations, consult
the relevant standard documents.

Details of a particular card's register assignments and operational characteristics can be
found in its register-level datasheet.

Datasheets for the EEPROM and I/O devices employed in cards may also be required.

Common Elements

PCIbus Identification
Pickering Interfaces PXI cards are identified using PCIbus Subsystem IDs in conformance with
PCIbus specification version 2.2.

The PCI interface of some models is implemented in an FPGA device, whose ID values in the
card's configuration space are:

Address
Offset

ID 16-bit Value

0000h Vendor ID 1761h

0002h Device ID 4411h

002Ch Subsystem Vendor ID 1761h

002Eh Subsystem ID card-specific

All models bearing these IDs employ the SERIALFPGA architecture - see below.

In other models the Vendor ID and Device ID values are those assigned by the manufacturer
of the PCI interface chip. The Subsystem Vendor ID identifies the card vendor as Pickering
Interfaces; the Subsystem ID identifies the specific card type. Card identification and other
PCIbus characteristics are set by an onboard EEPROM device dedicated to this purpose.

The ID values are located at the following offsets in the card's configuration space:

Address
Offset

ID 16-bit Value

0000h Vendor ID 10B5h

0002h Device ID 9050h or 9030h

002Ch Subsystem Vendor ID 1761h

002Eh Subsystem ID card-specific

Note that the card-specific Subsystem ID identifies a particular card model, but does not
necessarily indicate its precise functionality (for example model 40-630-022 is identified, but
not its configuration as a single or dual multiplexer, or its channel count).

Pickering cards designed for the PLX PCI9050 chip may instead be fitted with PCI9052. This
chip's PCI IDs are identical to those of the PCI9050, except for its Revision ID (offset 0008h,
bits 7:0) being altered from 01h to 02h; the two devices are functionally equivalent in
Pickering designs.

A legacy ID scheme exists in which cards of different types share a common Subsystem ID:

Address
Offset

ID 16-bit
Value

0000h Vendor ID 10B5h

0002h Device ID 9050h

002Ch Subsystem Vendor ID 10B5h

002Eh Subsystem ID 1150h

The legacy scheme is no longer used, and should only be found in cards manufactured prior
to mid-2001. The specific type of a card bearing these legacy IDs can only be determined by
interrogating the card's data EEPROM. Such cards can be updated to the current scheme on
request. Pickering software drivers continue to support both schemes.

Address Spaces
Cards carrying a PCI9050, PCI9052 or PCI9030 device utilise a 128-byte memory window at
PCI BAR0. This space is claimed by the PCI interface chip, allowing access to its own internal
registers. There should be no need to access this area in normal operation. If the contents of
the chip's internal registers are of any interest please consult the PLX PCI9050, PCI9052 or
PCI9030 data book.

PCI BAR1 is unused in all cards. A PCI9050, PCI9052 or PCI9030 interface chip only allows its
use as an I/O-mapped image of its internal registers, which is of little use in modern
systems.

All cards claim a memory window at PCI BAR2, corresponding to the card's Local Address
Space 0 (LAS0). Some cards claim additional memory windows at PCI BAR3 thru PCI BAR5 as
necessary, corresponding to Local Address Spaces LAS1 thru LAS3, i.e.
PCI BAR2 = LAS0
PCI BAR3 = LAS1
PCI BAR4 = LAS2
PCI BAR5 = LAS3

Card Data EEPROM
All cards have additional onboard EEPROM memory. Data held in this EEPROM describes the
card's characteristics to the Pickering software drivers.

In some models such as 40-290 programmable resistor cards the data EEPROM also provides
non-volatile storage of integer calibration values.

Status and Control Registers
All cards have a read/write register located at offset 0 in the card's LAS0 space. The read
register is designated the Status Register (SR), and the write register is designated the
Control Register (CR). The minimum implementation of these registers is their 8 least-
significant bits. Higher-order bits are implemented as necessary in specific designs.

Card Reset State
A PCIbus reset condition causes:
• all relays to be turned OFF
• all TTL digital outputs to go low
• all open-collector digital outputs to open

Card Architectures
Three basic card architectures are in use: parallel, serial, and SERIALFPGA. These
architectures are described below.

Parallel Architecture

In parallel architecture, I/O is performed by accessing parallel read (for input) and/or write
(for output) registers upto 32-bits wide located at offset 0 in LAS1 space, and similar
registers at offset 0 in higher-order spaces where necessary.

In some parallel cards there is a straightforward association between a register bit and the
corresponding I/O function, e.g.
Bit 0 = channel 1
Bit 1 = channel 2 etc.
In other cases register bits do not correspond directly with their I/O function, and a lookup
table must be incorporated in the driver.

Serial Architecture

In serial architecture, I/O is performed using parallel-serial registers (for input) or serial-
parallel registers (for output) whose control signals are operated by bits in the Status and
Control registers.

The bits associated with serial I/O control for a card having a single serial register are:
CR Bit 1 = LCLK (serial I/O clock, shared with EEPROM)
CR Bit 2 = LDATA (serial I/O data, shared with EEPROM)
CR Bit 3 = LSTRB1 (I/O loop #1 strobe)
CR Bit 4 = LOE (Output enable, all output loops)
SR Bit 1 = RDATA1 (I/O loop #1 receive data)

Cards having more than one serial I/O register implement additional LSTRB, RDATA signals.
See the CR and SR bit assignment tables.

The output of each serial register is made available in its RDATA bit. For an input function
this is essential, allowing the input data to be read. For an output function it facilitates a
measure of self-test, allowing the integrity of the register to be confirmed. Although hardware
failure is quite unlikely, it does at least allow a failed interconnect to be detected.

If necessary CR signals are inverted in hardware to match the behaviour of a particular I/O
device: the LOE signal is sometimes affected, to suit devices having an active-low enable
signal. From a software viewpoint, LOE is always active-high.

Refer to the applicable device datasheet for details of serial I/O register operation.

In general serial register bits do not correspond directly with their I/O function, and a lookup
table must be incorporated in the driver.

Enabling Outputs
At RESET, the outputs of serial architecture cards are disabled. After clearing output registers
and strobing this data to the outputs, LOE (CR bit 4) must be taken high to enable them.

Note
Present-generation PCs are capable of applying a software-generated clock rate that exceeds
the specification of I/O hardware in some models. Appropriate measures must be taken to
ensure that this does not occur. Bear in mind that PC speeds can only be expected to
increase further in future.

Note
It should not be assumed that I/O devices can be clocked to the limit of their specifications,
because circuit constraints may impose a lower limit. Consult the card's register-level data
sheet for this specification.

SERIALFPGA architecture

This architecture employs storage registers similar to those in the software-driven serial
implementation above; however they are accessed via an FPGA that provides a memory-
mapped image into which (for outputs) desired data patterns can be written, and the FPGA
then instructed to perform the serial transfer to the storage registers. This frees the CPU
from the intensive processing required by the software-driven method.

Register-level operation of this architecture is currently beyond the scope of this manual.

Accessing the Data EEPROM

The number and type of serial EEPROM devices fitted depends on the requirements of a
particular card. Low-density cards employ a single 93C56, 93C66 or 93C86 device. High-
density models employ one or more 93C86 devices. Use of 93C86 EEPROM (which has a
different instruction length) is flagged in bit 5 of the card's Status Register:
SR Bit 5 = '0': EEPROM type 93C56 or 93C66
SR Bit 5 = '1': EEPROM type 93C86

EEPROM is accessed by generating appropriate serial bitstream data on the associated Control
Register bits:
CR Bit 0 = EEPROMCS0 - primary EEPROM chip-select
CR Bit 1 = LCLK (clock, shared with serial I/O)
CR Bit 2 = LDATA (data, shared with serial I/O)
and the output bitstream is obtained on:

SR Bit 0 = EEPROMDO (EEPROM output bit)

Where more than one EEPROM is employed they are enabled using additional chip-select
signals supplied by further Control Register bits. See the CR bit assignment table. Output
from the enabled EEPROM is obtained on SR bit 0.

Refer to the applicable device datasheet for details of EEPROM operation. EEPROMs are
configured for 8-bit operation.

Note
Where multiple EEPROMs are employed, only one EEPROM may be enabled at any time.

Note
Present-generation PCs are capable of applying a software-generated clock rate that exceeds
the specification of the EEPROM device. Appropriate measures must be taken to ensure that
this does not occur. Bear in mind that PC speeds can only be expected to increase further in
future.

Note
It should not be assumed that EEPROM devices can be clocked to the limit of their
specifications, because circuit constraints may impose a lower limit. Consult the card's
register-level data sheet for this specification.

Note
Writing arbitrary values in the EEPROM area containing Pickering configuration data will
render a card inoperable by the Pickering software drivers.

EEPROM Configuration Data

Full interpretation and usage of the card configuration data held in EEPROM is beyond the
present scope of this manual, and it is not expected that a register-level user will attempt it.
Whereas Pickering software drivers are capable of operating the entire range of cards, it is
likely that a user's register-level driver will need to handle at most a few different models,
whose characteristics can be embedded in, or otherwise supplied to, the driver. The only
significant drawback with this method is that the driver cannot automatically accommodate
future card revisions.

Some basic card information can however be obtained from the first few EEPROM locations:

Byte
Offset

Interpretation

0 Byte 1 (MSB) of 16-bit card model code

1 Byte 0 of card model code (e.g. 40-632-021)

2 Byte 1 (MSB) of 16-bit card variant code

3 Byte 0 of card variant code (e.g. 40-632-021)

4 Card minor variant code character (e.g. 40-632-021-S)

5 Byte 3 (MSB) of 32-bit card serial number

6 Byte 2 of card serial number

7 Byte 1 of card serial number

8 Byte 0 of card serial number

9 Byte 1 (MSB) of 16-bit card revision number

10 Byte 0 of card revision number (100 = version 1.00)

Byte
Offset

Interpretation

11 Byte 1 (MSB) of 16-bit minimum driver version number

12 Byte 0 of minimum driver version (100 = version 1.00)

13 Reserved

14 Architecture code (1 or 2 = parallel; 3 = serial; 4 =
SERIALFPGA)

15 Series number (0 = System 40, other value = series
number, e.g. 50-125-121)

16 Card feature flags

17 Miscellaneous flags

18 Number of input sub-units

19 Number of output sub-units, only if number of input sub-
units is zero

Configuration data locations above this contain values describing the card's physical and
logical configuration in greater detail, and their interpretation is less straightforward.

Card Minor Variant Code
A null value indicates that the card has no minor variant suffix. A non-zero code is
customarily interpreted as an ASCII character. A value not corresponding to a printable ASCII
character may be interpreted in other ways, though no such values are currently in use.

Card Revision Number
This number will increase if any significant revision is made to the card's hardware.

Minimum Driver Version
This number indicates the earliest version of the Pickering software driver by which the card
can be operated.

Integer Calibration Data
Where supported, integer calibration data is stored in EEPROM locations above those used for
Pickering configuration data. Its position will be specified in the card's register-level data
sheet. Generally the interpretation of calibration values is user-specific - Pickering software
drivers simply provide support for storing and retrieving them. However some instrument
models use them to calibrate particular Pickering driver functions, and if values are altered
the behaviour of those functions will be affected.

Status Register Bit Assignments

Bit Label Function

0 EEPROMDO EEPROM Data Out

1 RDATA1 Receive Data, I/O loop 1

2 RDATA2 Receive Data, I/O loop 2

3 RDATA3 Receive Data, I/O loop 3

4 RDATA4 Receive Data, I/O loop 4

5 EEPROMSZ '0' for 93C56/93C66, '1' for 93C76/93C86

6 - Reserved, read as '0'

7 - Reserved, read as '0'

Bit Label Function

8 RDATA5 Receive Data, I/O loop 5

9 RDATA6 Receive Data, I/O loop 6

10 RDATA7 Receive Data, I/O loop 7

11 RDATA8 Receive Data, I/O loop 8

12 RDATA9 Receive Data, I/O loop 9

13 RDATA10 Receive Data, I/O loop 10

14 RDATA11 Receive Data, I/O loop 11

15 RDATA12 Receive Data, I/O loop 12

16 RDATA13 Receive Data, I/O loop 13

17 RDATA14 Receive Data, I/O loop 14

18 RDATA15 Receive Data, I/O loop 15

19 RDATA16 Receive Data, I/O loop 16

20 - Usage undefined

21 - Usage undefined

22 - Usage undefined

23 - Usage undefined

24 - Usage undefined

25 - Usage undefined

26 - Usage undefined

27 - Usage undefined

28 - Usage undefined

29 - Usage undefined

30 - Usage undefined

31 - Usage undefined

Control Register Bit Assignments

Bit Label Function

0 EEPROMCS0 Primary EEPROM chip-select

1 LCLK Serial clock, EEPROM and all I/O loops

2 LDATA Transmit data, EEPROM and all I/O loops

3 LSTRB1 I/O strobe, loop 1

4 LOE Output enable, all output loops

5 LSTRB2 I/O strobe, loop 2

6 LSTRB3 I/O strobe, loop 3

7 LSTRB4 I/O strobe, loop 4

8 EEPROMCS1 Auxiliary EEPROM #1 chip-select

9 EEPROMCS2 Auxiliary EEPROM #2 chip-select

10 EEPROMCS3 Auxiliary EEPROM #3 chip-select

Bit Label Function

11 EEPROMCS4 Auxiliary EEPROM #4 chip-select

12 EEPROMCS5 Auxiliary EEPROM #5 chip-select

13 LSTRB5 I/O strobe, loop 5

14 EEPROMCS6 Auxiliary EEPROM #6 chip-select

15 LSTRB6 I/O strobe, loop 6

16 EEPROMCS7 Auxiliary EEPROM #7 chip-select

17 LSTRB7 I/O strobe, loop 7

18 EEPROMCS8 Auxiliary EEPROM #8 chip-select

19 LSTRB8 I/O strobe, loop 8

20 EEPROMCS9 Auxiliary EEPROM #9 chip-select

21 LSTRB9 I/O strobe, loop 9

22 EEPROMCS10 Auxiliary EEPROM #10 chip-select

23 LSTRB10 I/O strobe, loop 10

24 EEPROMCS11 Auxiliary EEPROM #11 chip-select

25 LSTRB11 I/O strobe, loop 11

26 EEPROMCS12 Auxiliary EEPROM #12 chip-select

27 LSTRB12 I/O strobe, loop 12

28 LSTRB13 I/O strobe, loop 13

29 LSTRB14 I/O strobe, loop 14

30 LSTRB15 I/O strobe, loop 15

31 LSTRB16 I/O strobe, loop 16

All Control Register bits are cleared at RESET.

Operational Considerations

Readback Capability
The output function of parallel and serial architecture cards is write-only; they have NO
readback capability (i.e. the card's current output states are not readable by software). A
software driver must maintain a soft-copy of the card's output states. By implication, when a
software driver takes control of a card it must assume its state to be undefined. The normal
course of action on taking control of a card would be to clear its outputs.

Cards using SERIALFPGA architecture do have readback capability.

Debounce Timing
Cards using the parallel and serial architectures have no onboard timer. Timing of switch
settling periods can be done with reasonable accuracy using the system's performance
counter, accessible using the Windows functions QueryPerformanceFrequency and
QueryPerformanceCounter.

Cards using SERIALFPGA architecture have a programmable timer onboard. At present its
condition can only be discovered by software polling.

Maximising Switch Life
All forms of metal-to-metal contact switch are subject to wear-out, but the behaviour of a
software driver can have a big influence on their useful life. With the speed of the modern PC

a software driver can manage switch operations intelligently with negligible time overhead.
Stating the obvious, if a switch is operated twice when it need only operate once, it will wear
out in half the time. As an example, when performing a channel change on a (single-channel)
multiplexer with isolation switching, there is no need to break and re-make the isolation
switch - saving the time and wear involved in cycling it. For such a device (and purely from a
switching viewpoint), this is a drawback of drivers that force explicit disconnection of a
selected channel before allowing the selection of a different one.

Isolation Switching
Where a card supports isolation switching, operation should ensure that the isolation switches
cold-switch, in order to avoid concentrating contact wear on them and causing possible
premature switch failure. This can be achieved by:
• when closing a channel, first close the isolation switch, then the channel switch
• when opening a channel, first open the channel switch, then the isolation switch

Break-Before-Make Action (BBM)
BBM is generally the safest mode of switch operation. However significant time savings are
often possible by overlapping non-conflicting switch changes, particularly when using slow-
operating switches such as microwave types. Make-Before-Break action may be desirable in
some applications.

Default Channel Selection
Some RF and optical multiplexer units have no "disconnect" state: one channel remains
connected even when all switches are turned OFF. A driver for such types should take
account of this and report the card's state accordingly.

VISA Operation
The interpretation of cards' Vendor, Device and Subsystem IDs by different VISA
implementations and/or revisions has not been consistent. To ensure compatibility with
different VISA releases it is advised that VISA attributes such as:
• VI_ATTR_MANF_ID
• VI_ATTR_MODEL_CODE
• VI_ATTR_MANF_NAME
• VI_ATTR_MODEL_NAME
• VI_ATTR_PXI_SUB_MANF_ID (obsolescent in NI-VISA 3.0)
• VI_ATTR_PXI_SUB_MODEL_CODE (obsolescent in NI-VISA 3.0)
should not be used for card identification purposes. Instead the Vendor, Device and
Subsystem IDs should be read directly from the card's Configuration Space
(VI_PXI_CFG_SPACE) using the viIn16 function.

VI_PXI_CFG_SPACE offset Attribute

0x00 Vendor ID

0x02 Device ID

0x2C Subsystem Vendor ID

0x2E Subsystem ID

NI-VISA 3.0 and later versions support the inclusion of Subsystem IDs in a card's VISA
registration, allowing cards using Subsystem IDs to be properly distinguished in the VISA
environment.

Operation of cards that employ software-driven serial architecture can be speeded up
considerably by using VISA Low Level Access (LLA) in place of High Level Access (HLA).

Operational Warnings

Microwave Multiplexer Devices

In order to avoid overheating it is essential that no more than one channel of an individual
multiplexer unit is energised at any time. Board GPIB269R0 has an onboard fuse to protect
against energisation of a hugely excessive number of channels, but it cannot protect an
individual switch unit from overheating.

High-density Matrix Devices
In order to avoid overheating it is essential that the specified maximum number of
simultaneous crosspoint closures on such devices is not exceeded. Some matrix cards have
fuse protection against energisation of a hugely excessive number of crosspoints, but it may
not protect against overheating if too large a contiguous block of relays is energised. Such a
situation would not be expected in normal usage of these units, and is more likely to occur as
a result of a programming error.

In many units it would be acceptable to energise larger numbers of relays that are not
physically adjacent to one another, but this is difficult to manage in practice since the
physical layout and ventilation characteristics of the unit become critical factors. Seemingly
illogical operational constraints might well result.

Operational Issues

Inefficient use of system resources
The use of multiple memory spaces in parallel architecture cards is wasteful, and unjustified
for cards of such simple functionality. The reason for this is historical.

In some architectures the size of memory spaces claimed is larger than strictly necessary.
This originated as a workaround for a problem in the Device Manager of Windows 95 (RIP). In
practice the size claimed is very unlikely to cause a memory allocation problem.

In cards using software-driven serial architecture, software clocking can place quite heavy
demands on CPU time. This is more likely to be a concern in very high-density units.

Readback capability
Cards using the parallel and serial architectures have no readback capability. This presents
problems if it is required to re-open cards (perhaps using a different application) with their
previously-set output states intact. A software solution is usually possible, but may be quite
cumbersome. Providing readback would require additional hardware, using up PCB real-estate
and reducing a card's switching functionality.

Readback is supported in the SERIALFPGA architecture.

Software clock timing
With the increased speed of modern PCs, the frequency of a clock signal generated in
software can easily exceed the specification of onboard hardware devices. Some form of
timing control therefore becomes necessary.

Historically, the performance counter accessible through the Windows API function
QueryPerformanceCounter had a frequency of about 1.2MHz, with a typical access time of
around 5uS. In later machines the frequency was increased to 3.6MHz. This still did not
provide sufficient resolution for optimal control of software-generated clock signals of 1MHz
or above, and to obtain adequate performance it has sometimes been necessary to resort to
software delay loops. However in some recent systems the performance counter frequency is
increased to the full CPU clock rate and with faster CPUs also reducing access time, it is much
better for this purpose. The function QueryPerformanceFrequency allows this value to be read
in the target system. The time penalty for sub-optimal operation is obviously greatest in
high-density units.

In some chipsets the Windows performance counter may exhibit erratic behaviour (ref.
Microsoft Knowledge Base Article ID 274323).

Asynchronous operation
Cards using the parallel and serial architectures have no onboard timer or interrupt
capability, so true asynchronous operation with callback on completion of switch operation is
not available.

In SERIALFPGA architecture a programmable timer is available, but interrupt generation is
not currently supported; it may be added in future.

PXI trigger functions
Trigger functionality is unavailable in cards using the parallel and serial architectures.

Trigger functionality is not currently available in SERIALFPGA architecture, but may be added
in future.

33MHz/66MHz operation
PXI specifications have defined operation at 33MHz using 5V signalling, with cards being
keyed accordingly (brilliant blue key): Pickering cards are keyed in this way. However there
has been confusion over implementation of the M66EN signal in PXI cards and chassis. If
either a card or chassis segment is incapable of 66MHz operation it should ground M66EN,
but this has not been followed in all cases. Some Pickering cards and 8-slot chassis are
affected, as well as some from other vendors. As a result, a bus controller that is 66MHz-
capable may attempt to operate a segment or cards that are not 66MHz capable at that
speed, usually leading to erratic behaviour. Where this occurs the preferred workaround, if
the option exists, is to configure the bus controller for fixed operation at 33MHz. When the
controller does not have this facility the cards and/or chassis can be modified to correct the
problem.

The 66MHZ_CAPABLE bit in the PCI Status Register of Pickering cards is correctly
implemented (value '0', not capable), but operating systems generally seem to ignore it.

Additional Support

For further assistance, please contact:

Pickering Interfaces Ltd.
Stephenson Road
Clacton-on-Sea
Essex
CO15 4NL
UK

Telephone: 44 (0)1255 687900
Fax: 44 (0)1255 425349

Regional contact details are available from our website: http://www.pickeringtest.com

Email (sales): sales@pickeringtest.com
Email (technical support): support@pickeringtest.com

Other Sources of Information

PCI Special Interest Group (PCI-SIG): http://www.pcisig.com
PLX Technology, Inc.: http://www.plxtech.com
PCI Industrial Computer Manufacturers Group (PICMG): http://www.picmg.com
PXI Systems Alliance (PXISA): http://www.pxisa.org
VXIplug&play Systems Alliance: http://www.vxipnp.org

http://www.pickeringswitch.com/
http://www.vxipnp.org/
http://www.pxisa.org/
http://www.picmg.com/
http://www.plxtech.com/
http://www.pcisig.com/
mailto:support@pickeringswitch.com
mailto:sales@pickeringswitch.com

	Programming options
	VISA driver - pipx40
	Direct I/O driver - Pilpxi
	Register-level Programming Manual

